
US008275888B2

(12) United States Patent (10) Patent No.: US 8,275,888 B2
Branigan et al. (45) Date of Patent: Sep. 25, 2012

(54) INDEXING HETEROGENEOUS RESOURCES OTHER PUBLICATIONS

(75) Inventors: James P. Branigan, Creedmoor, NC
(US); David P. Charboneau, Durham,
NC (US); Simon K. Johnston, Siler
City, NC (US); Martin P. Nally, Laguna
Beach, CA (US); Lawrence S. Rich,
Cary, NC (US); Edison L. Ting, San
Jose, CA (US); Robbert Van der
Linden, Scotts Valley, CA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 343 days.

(21) Appl. No.: 12/625,894

(22) Filed: Nov. 25, 2009

(65) Prior Publication Data

US 2011 FO1259.04 A1 May 26, 2011

(51) Int. Cl.
G06F 5/73 (2006.01)

(52) U.S. Cl. 709/226; 709/203; 709/217; 709/219;
707/706; 707/769; 707/688; 707/740

(58) Field of Classification Search 709/203,
709/217, 226, 219; 707/1-10, 100-102,

707/706, 769,688, 740
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0177124 A1* 9, 2003 Sauri 707/10
2009/0024650 A1 1/2009 Kamani et al. 707/102

Dusseault, L., “HTTP Extensions for WebDistributed Authoring and
Versioning (WebDAV)”, www.ietforg/rfc/rfc4918.txt (Obtained
from the Internet: May 26, 2009) Jun. 2007, 162 pages.
Goland, Y. et al., “HTTP Extensions for Distributed Authoring—
WEBDAV”, www.ietforg/rfc/rfc2518.txt (Obtained from the
Internet: May 26, 2009) Feb. 1999, 120 pages.
W3, "Resource Description Framework (RDF)', www.w3.org/RDF/
(Obtained from the Internet: May 26, 2009) (Last Date Modified:
Apr. 30, 2009), 10 pages.
W3, “SPARQL Query Language for RDF', www.w3.org/TR/rdf.
sparql-queryl (Obtained from the Internet: May 26, 2009) Jan. 15,
2008, 111 pages.
W3, “XQuery 1.0: An XML Query Language'. http://www.w3.org/
TR/xqueryl (Obtained from the Internet: May 22, 2009) Jan. 23.
2007, 207 pages.
Wikipedia, “Web 2.0', http://en.wikipedia.org/wiki/Web 2.0
(Obtained from the Internet: May 22, 2009) (Last Date Modified:
May 22, 2009), 5 pages.

* cited by examiner

Primary Examiner — Wing Chan
Assistant Examiner — Hitesh Patel
(74) Attorney, Agent, or Firm — DeLizio Gilliam, PLLC

(57) ABSTRACT

Resources are typically stored in homogenous data structures
by shredding resource data into database tables destroying a
native format of the resources. Typical approaches to index
ing the resources rely on users indicating properties that
should be indexed, using full text searches to create resource
index documents, and other such labor and computation
intensive processes. Functionality can be implemented to
dynamically generate the resource index documents based on
resource properties with minimal user input. The resource
index documents can be in a common format to facilitate
access to resources stored in heterogeneous native resource
formats.

18 Claims, 5 Drawing Sheets

ByDETERMINE RESOURCE PROPERTIES THAT
04 SHOULD BEINDEXED EASED ON ARESOURCE

INDEX SCHEMA

RESOURCE INDEX
SCHEMADATABASE

c2 RETRIEVE AND x
PRESENT

RESOURCES
REFERENCED BY
THEIDENTIFIE

NEX
DOCUMENTS

* ACCESSING ARESOURCE

12

RESOURCES RETRIEWED BASED
oNUERYFARAeters

RESOURCESTORE

f A2)RECEIVE A QUEry for a

MUSIC v

08

A DETERMINE THATA
RESCURCEHAS BEEN

STORED INA
RESOURCESTORE

c1)CREATE ARESOURCE INDEX
OCUMENTFROMEXTRACTED
RSOURCEPROPERTIES

D1)STORE THE INDEX
DOCUMENTS

B2)us QUERY PARAMETERs To
SEARCHFORTHERESCURCEBY

IENTIFYING INDEX occyMENTS THAT
NDICATE THE QUERY PARAMETERS

110

INTERFACE FORUERYING RESOURCES

1) MUSIC TITLE1. MP3

2) Rock TITLE1 waW

ARTISTNAME

ALBUMNAME

TRACKNAME

SEQUAL TO ROCK

SEARCH

TRACK
LENGTH

SENRE

s's 114
116

U.S. Patent Sep. 25, 2012 Sheet 1 of 5 US 8,275,888 B2

B1) DETERMINE RESOURCE PROPERTIES THAT
SHOULD BE INDEXED BASED ON ARESOURCE

INDEX SCHEMA

RESOURCE INDEX
SCHEMA DATABASE A1) DETERMINE THAT A

RESOURCE HAS BEEN
STORED INA

RESOURCE STORE RESOURCE STORE

C1) CREATE ARESOURCE INDEX
DOCUMENT FROM EXTRACTED

RESOURCE PROPERTIES
C2) RETRIEVE AND

PRESENT

RESOURCES D1) STORE THE INDEX
REFERENCED BY RESOURCE DOCUMENTS
THE DENTIFIED A INDEXING UNIT

INDEX ^
DOCUMENTS

B2) USE QUERY PARAMETERS TO
SEARCH FOR THE RESOURCE BY

IDENTIFYING INDEX DOCUMENTS THAT
INDICATE THE QUERY PARAMETERS

A2) RECEIVE A QUERY FOR
ACCESSING ARESOURCE

INTERFACE FOR QUERYING RESOURCES

RESOURCES RETRIEVED BASED
ON (RUERY PARAMETERS

1) MUSIC TITLE 1. MP3 ARTIST NAME IS EQUAL TO ROCK

2) ROCK TITLE 1.WAV ALBUMNAME

TRACK NAME SEARCH

TRACK -- --M.

LENGTH - |

U.S. Patent Sep. 25, 2012 Sheet 2 of 5

BEGIN

RECEIVE ARESOURCE TO BESTORED

204

212

214

216

DETERMINE ARESOURCE CATEGORY FOR THE
RESOURCE

SAT LEAST ON
RESOURCE INDEX SCHEMA

OR THE RESOURCE CATEGORY
AVAILABLEP

RETRIEVE THE RESOURCE INDEX SCHEMA
FOR THE RESOURCE IS RETRIEVED

DETERMINE A SET OF RESOURCE
PROPERTIES THAT SHOULD BE INDEXED AS

INDICATED BY THE RESOURCE INDEX
SCHEMA

GENERATE AN INDEX DOCUMENT
COMPRISING THE SET OF RESOURCE

PROPERTIES

STORE THE INDEX DOCUMENT FOR THE
RESOURCE IN AN INDEX STORE

END

FIG. 2

NO

US 8,275,888 B2

RETRIEVE A GENERIC
RESOURCE INDEX SCHEMA

U.S. Patent Sep. 25, 2012 Sheet 3 of 5 US 8,275,888 B2

300 \

RECEIVE A CUERY FOR RETREVING ARESOURCE
302 FROMA RESOURCE STORE

3041- IDENTIFY A SET OF QUERY PARAMETERS

fy RE INDEX DOCUMENTS INDICA
306 RESOURCE PROPERTIES THAT SATISFY THE

QUERY PARAMETERS IDENTIFIED2

DETERMINE ALOCATION OF THE RESOURCE
3O8 REFERENCED BY MATCHED INDEX DOCUMENTS

TRANSMIT THE RESOURCE FOR PRESENTATION ON A
310 CLIENT APPLICATION

FIG. 3

U.S. Patent Sep. 25, 2012 Sheet 4 of 5 US 8,275,888 B2

402

406 a

PROCESSOR(S)

--- GRAPHICS

0 - CoNTROLLER

422

DISPLAY
406 DEVICE

408 nul IDEIATA DRIVE(S)
RESOURCE
INDEXING

UNIT

410) - USB PORT(s)

INPUTIOUTPUT
CONTROLLERHUB

412 KEYBOARD

414 - SELECTION DEVICE

416 - FIREWIRE PORT(s)

418 - CD-ROMDRIVE

420 - NETWORK
INTERFACE

FIG. 4

U.S. Patent Sep. 25, 2012 Sheet 5 of 5 US 8,275,888 B2

500 a

RESOURCE
INDEXING RESOURCE -

STORE

INDEX SCHEMA
DATABASE

CLIENT

520

CLIENT

CLIENT
APPLICATION

CLIENT

FIG. 5

US 8,275,888 B2
1.

INDEXING HETEROGENEOUS RESOURCES

BACKGROUND

Embodiments of the inventive subject matter generally
relate to the field of data storage and retrieval and, more
particularly, to techniques for indexing heterogeneous
SOUCS.

Storage and retrieval of resources typically involves shred
ding resource data into database tables and querying the
resource data from the database tables. Indexing the resources
for faster retrievalentails creating index documents from user
specified properties and/or content retrieved as a result of full
text searches.

SUMMARY

Embodiments include a method comprising determining a
resource category for a resource based, at least in part, on
metadata of the resource. A resource index schema for the
resource is identified based, at least in part, on the resource
index schema indicating a resource property of the resource.
A property value for the resource property is determined from
the metadata. An index document that has a format indepen
dent of a format of the resource is created. The index docu
ment indicates the resource property and the property value
and references the resource in a resource store of heteroge
neous native format resources. The index document is stored
in an index store that comprises a plurality of index docu
ments, where the index document and the plurality of index
documents have common formatting.

Another embodiment includes a method comprising deter
mining a query parameter specifying a property value of a
resource property of a resource based, at least in part, on a
query to retrieve the resource from a resource store of hetero
geneous native format resources. An index store that com
prises a plurality of index documents is searched to identify
an index document that indicates the resource property and
the property value specified in the query parameter. The plu
rality of index documents in the index store has common
formatting. The index document that indicates the resource
property and the property value specified in the query param
eter and that references the resource in the resource store is
identified. The resource is retrieved from the resource store
based on identifying the index document that indicates the
resource property and the property value specified in the
query parameter and that references the resource in the
reSOurce Store.

Another embodiment includes a computer program prod
uct for indexing heterogeneous resources, where the com
puter program product comprises a computer usable medium
comprising computer usable program code. The computer
usable program code is configured to determine a resource
category for a resource based, at least in part, on metadata of
the resource. The computer usable program code is config
ured to identify a resource index schema for the resource
based, at least in part, on the resource index schema indicating
a resource property of the resource. The computer usable
program code is also configured to determine a property value
for the resource property from the metadata. The computer
usable program code is configured to create an index docu
ment that has a format independent of a format of the
resource. The index document indicates the resource property
and the property value and references the resource in a
resource store of heterogeneous native format resources. The
computer usable program code is further configured to store
the index document in an index store that comprises a plural

10

15

25

30

35

40

45

50

55

60

65

2
ity of index documents. The index document and the plurality
of index documents have common formatting.

Another embodiment includes an apparatus comprising a
processor, a network interface coupled with the processor, a
resource store for storing heterogeneous native format
resources, an index store comprising a plurality of index
documents with common formatting and a resource-indexing
unit. The resource-indexing unit is operable to determine a
resource category for a resource based, at least in part, on
metadata of the resource. The resource-indexing unit is also
operable to identify a resource index schema for the resource
based, at least in part, on the resource index schema indicating
a resource property of the resource. The resource-indexing
unit is operable to determine a property value for the resource
property from the metadata. The resource-indexing unit is
operable to create an index document that has a format inde
pendent of a format of the resource. The index document
indicates the resource property and the property value, and
references the resource in the resource store. The resource
indexing unit is further configured to store the index docu
ment in the index store, where the index document and the
plurality of index documents have common formatting.

BRIEF DESCRIPTION OF THE DRAWINGS

The present embodiments may be better understood, and
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 is a conceptual diagram for indexing and storing
resources in heterogeneous resource formats.

FIG. 2 is a flow diagram illustrating example operations for
dynamically creating index documents for heterogeneous
SOUCS.

FIG.3 is a flow diagram illustrating example operations for
using index documents to access heterogeneous resources.

FIG. 4 is an example computer system 400 configured for
creating index documents for heterogeneous resources and
retrieving a resource based on the index documents.

FIG. 5 is an example block diagram configured for index
ing and querying heterogeneous resources.

DESCRIPTION OF EMBODIMENT(S)

The description that follows includes exemplary systems,
methods, techniques, instruction sequences, and computer
program products that embody techniques of the present
inventive subject matter. However, it is understood that the
described embodiments may be practiced without these spe
cific details. For instance, although examples refer to gener
ating index documents as Resource Description Framework
(RDF) documents, the index documents can be generated in
other formats (e.g., Extensible Markup Language (XML)
documents). In other instances, well-known instruction
instances, protocols, structures, and techniques have not been
shown in detail in order not to obfuscate the description.

Storage and retrieval of resources typically focuses on
creation of homogenous data structures that can be mapped to
relational database middleware by shredding resource data
into database tables. This approach fails in a heterogeneous
resource environment where the resources need to be stored
and retrieved in their native formats because shredding the
resource data results in a difference between the resource's
input and output formats. Typical approaches to indexing
require user input (e.g., the user may be required to input

US 8,275,888 B2
3

properties that should be indexed) and may be computation
ally intensive (e.g., using full text searches to generate
indexes).
A resource-indexing unit that constructs resource index

documents in a common format allows clients to perform 5
queries to access resources stored in heterogeneous native
resource formats. The resource-indexing unit can construct
index documents indicating properties of the resources and
relationships between the resources in order to support the
queries to access the resources. Storing resources in their 10
native formats and using resource format independent index
documents to retrieve the resources can preclude the need for
modifying the native resource format. This can be particularly
helpful in the development of healthcare systems, which have
to deal with patient records, medical images, and other digital
data and provide query and data mining functions across all of
a patient’s medical records. Moreover, the resource-indexing
unit can dynamically generate resource index documents
based on resource properties specified in the resource meta
data thus minimizing user input and reducing the computa- 20
tional intensity.

FIG. 1 is a conceptual diagram for indexing and storing
resources in heterogeneous resource formats. In FIG. 1, a
resource-indexing unit 102 is coupled with a resource store
106, a resource index schema database 104, and an index 25
store 108. Resources are stored, in their native format, in the
resource store 106. All operations (e.g., create, update, delete,
retrieve, etc.) on the resources take place against the resource
store 106. Queries for operating on the resources are directed
to the index store 108. The index store 108 comprises a set of 30
properties about the resources. The resource index schema
database 104 comprises a set of schemata that define the set of
properties, about the resources that should be indexed. The
resource-indexing unit 102 constructs resource index docu
ments based on the set of resource properties identified by at
least one resource index schema. The resource index docu
ments allow clients to query for the resources stored in the
heterogeneous resource formats.

At stage A1, the resource-indexing unit 102 determines
that a resource has been stored in the resource store 106. In
Some implementations, the resource-indexing unit 102 can
query the resource store 106 at regular intervals of time (e.g.,
every hour) to identify resources that have been stored during
the time intervals. In other implementations, the resource
store 106 may invoke the resource-indexing unit 102 or trans
mit a notification to the resource-indexing unit 102 indicating
that a user has stored the resource on the resource store 106.
The resources in the resource store 106 are stored in their
native formats. For example, the resource store 106 may store
documents, images, structured XML resources, resources in
legacy or proprietary formats, etc.

At stage B1, the resource-indexing unit 102 determines
resource properties that should be indexed based on at least
one resource index schema. The resource-indexing unit 102
can identify a category to which the resource belongs ("re
Source category'). For example, the resource-indexing unit
102 may determine, based on a filename extension, that the
resource is a text file. As another example, the resource
indexing unit 102 may examine the resource's metadata and
determine that the resource is an audio file. The resource
index schema database 104 can comprise a resource index
schema specific to each resource category. In some imple
mentations, the user or client application may upload a
resource index schema as a plug-in or other hardware/soft
ware component. The resource-indexing unit 102 can then
access the resource index schema database 104 and determine
whether the resource index schema for the identified resource

15

35

40

45

50

55

60

65

4
category exists. For example, the resource-indexing unit 102
may query the resource index schema database 104 and
retrieve a resource index schema for HyperTextMarkup Lan
guage (HTML) files indicating which properties of the
HTML files should be indexed. The resource index schema is
a declarative specification of the resource properties that
should be indexed. The resource index schema may specify a
Subset of the resource properties. The resource-indexing unit
102 reads the resource properties (e.g., from the resource
metadata) that should be indexed as indicated by the resource
index schema.
At stage C1, the resource-indexing unit 102 creates an

index document for the resource (“resource index docu
ment') from the resource properties. The resource-indexing
unit 102 may create an RDF based resource index document
describing the resource in the resource store 106. In some
implementations, the resource-indexing unit 102 may create
more than one index document for the resource. For example,
to describe an album in a music database, the resource-index
ing unit 102 can create an index document for the album
comprising properties of the album (e.g., album name, release
date, record label, etc.). The resource-indexing unit 102 may
also create one index document for each of the tracks on the
album. The index documents for the tracks can comprise
properties such as track name, track length, writer, etc.
At stage D1, the resource-indexing unit 102 stores the

resource index document in the index store 108. The index
store 108 can have a fixed server-defined format so that clients
can write queries efficiently and in a standard query format. In
one implementation, RDF can be used to represent the
resource properties that are indexed (“indexed resource prop
erties”). The index store 108 may be an XML enabled data
base. Storing RDF resource index documents in the XML
enabled index store 108 can allow both XML processors and
RDF processors to efficiently access the index store 108 using
XML based queries and RDF based queries respectively. In
another implementation, the index store 108 may be an RDF
store and queries in an RDF query language (e.g., SPARQL)
may be directed to the index store 108. As another example,
the index store 108 may be an XML store and queries in an
XML query language (e.g. XQuery) may be directed to the
index Store 108.

Stages A2-C2 describe how the index documents in the
index store 108 are used to identify and retrieve the resources
in the resource store 106.
At stage A2, the resource-indexing unit 102 receives a

query for accessing the resource. A client application on the
user's computer system may present an interface 110 for
querying the resource. The user may specify a resource cat
egory 112 to narrow the scope of the query. In FIG. 1, the user
specifies, via the interface 110, that the resource belongs to
the music category 112. On the interface 110, the client appli
cation presents various search criteria based on resource
properties that correspond to the selected resource category
112. In FIG. 1, drop down menu 114 presents artist name,
album name, track name, track length, genre as search criteria
for querying the resource. In some implementations, the cli
ent application may keep track of the indexed resource prop
erties, specified by the user while uploading the resource, and
present the indexed resource properties as the search criteria.
In another implementation, the client application may inter
face with the resource-indexing unit 102 and retrieve and
present a list of search criteria (e.g., indexed properties for
music resources, previously searched properties of the music
resources, indexed/searched properties for all resource cat
egories, etc.). In FIG. 1, the user indicates that music
resources with 'genre equal to rock” should be retrieved. The

US 8,275,888 B2
5

client application transmits the query to the resource-index
ing unit 102 after the user clicks on a search button 116.

At stage B2, the resource-indexing unit 102 uses query
parameters to search for the resource by identifying index
documents that indicate the query parameters. The resource
indexing unit 102 can retrieve the query parameters from the
query transmitted by the client application. The query param
eters can indicate the resource category for the resource being
queried. The query parameters can also indicate user-speci
fied values for the search criteria. In FIG. 1, the query param
eters are “resource category music' and "genre is equal to
rock”. The resource-indexing unit 102 uses the query param
eters, searches through the index documents in the index store
108, and identifies the index documents with indexed
resource properties that match the query parameters. For
example, the resource-indexing unit 102 can search through
the indexed resource properties and identify the index docu
ments such that the indexed resource property 'genre' has an
associated value of “rock”. The resource-indexing unit 102
can identify a location of the resources referenced by the
identified index documents.
At stage C2, the resource-indexing unit 102 retrieves the

resources referenced by the identified index documents from
the resource store 106 and presents the resources. The
resource-indexing unit 102 may transmit the resources or
links to locations of the resources for presentation on the
client application. This is depicted by interface 120. The
resources may be downloaded from the resource store 106 for
presentation on the client in response to the user clicking on a
link to one of the resources presented on the interface 120.

FIG.2 is a flow diagram illustrating example operations for
dynamically creating index documents for heterogeneous
resources. Flow 200 begins at block 202.
A resource to be stored in a resource store is received

(block 202). A notification may be received in response to a
user uploading the resource (e.g., an audio file, a text file, a
spreadsheet, an HTML document, an XML document, etc.) to
the resource store. For example, a process running on the
resource store may generate a notification every time a
resource is stored on the resource store. In another implemen
tation, the resource store may be queried at regular intervals
of time and a list of resources (e.g., resource names, location
on the resource store, etc.) that were stored during the interval
of time may be generated. The flow continues at block 204.
A resource category for the resource is determined (block

204). The resource category may be determined based on
identifying a filename extension of the resource. For example,
a resource with filename extension".doc' may be categorized
as a text file. In some implementations, the resource category
may also be determined based on resource metadata. In
another implementation, a user may indicate the resource
category when the user stores the resource. For example, the
user may select the resource category (e.g., music, image,
etc.) or a resource file name extension via an interface for
uploading the resource. In some implementations, a client
application may identify the resource category and indicate
the resource category in the resource metadata. The flow
continues at block 206.

It is determined whether at least one resource index schema
for the resource category is available (block 206). A resource
index schema database 104 can comprise a resource index
schema specific to each resource category. In some imple
mentations, resource index schema specific to the resource
may also be uploaded. For example, the user may upload an
image file and also upload a resource index schema specific to
the image file. Resource index schemata indicating resource
properties that should be indexed in addition to those speci

10

15

25

30

35

40

45

50

55

60

65

6
fied by existing resource index schemata may also be
uploaded. The resource index schema specifies resource
properties that should be indexed. The resource index schema
may be an XML file with declarative statements indicating a
set of resource properties that should be indexed for easy
identification and retrieval of the resource. If it is determined
that at least one resource index schema for the resource cat
egory is available, the flow continues at block 208. Otherwise,
the flow continues at block 210.
A generic resource index schema is retrieved (block 210).

The generic resource index Schema may be retrieved when
the resource index schema for the resource category or the
resource index schema specific to the resource is not avail
able. The generic resource index schema may also be
retrieved if resource metadata or resource properties cannot
be identified or if the resource category cannot be identified.
The generic resource index schema indicates that resource
properties associated with storing the resource should be
indexed. For example, resource properties such as a date and
time when the resource was stored, a name of the resource,
information identifying the user (e.g., user name, user iden
tification number, etc.) who stored the resource, device iden
tification information (e.g., a MAC address of a computer
system used to store the resource, an IP address of a website
through which the resource was uploaded, etc.), etc. The flow
continues at block 212.
The resource index schema for the resource is retrieved

(block 208). As described earlier, the resource index schema
specifies the set of resource properties that should be indexed.
The code Snippet below is an example resource index schema
for an audio resource. As depicted in the code snippet, the
resource index schema indicates that for the audio resource,
an index document comprising resource properties Such as
album name, album artist, and genre should be generated. The
resource index schema also indicates that separate index
documents comprising track name and track number for be
created for each audio track in the album. The flow continues
at block 212.

<indexSpecification Xmlins=" namespace="http://
example.com/xmlins/music'>
<index element="album name -
<index element="album/artist’ objectType="uri's
<index element="album genre's
<index secondaryElement="album track? (a)id object="../name's
<index secondaryElement="album track? (a)id object="../trackNumber
objectType="int/>
</indexSpecification>

The set of resource properties that should be indexed (“in
dexed resource properties”) as indicated by the resource
index schema are determined (block 212). The set of resource
properties may be determined from the resource metadata. An
example XML file comprising metadata for an audio resource
is depicted below.

<album Xmlins="http://example.com/xmlins/music'>
<name> Keep the Faith <name>
<releasedYear>1992</releasedYearc>
<artistiaZZ/resources/musicdb/artists/artist-1</artist

<genre-Rock genre
<track id="track-01
<name>I believes name>
<trackNumber-1</trackNumbers

US 8,275,888 B2
7

-continued

<duration>10:01< duration
<writers jazzfresources/musicdb? artists artist-101</writers
<writers jazzfresources/musicdb? artists artist-102</writers
<track
<album

From the above example, the resource metadata specifies
properties of the audio resource Such as album name, year of
release, artist, track information (e.g., track number, write,
duration, etc.) etc. Based on the resource index schema
retrieved for the audio resource, only a subset of the resource
properties are to be indexed. Thus, for this example, only the
album name, album artist, and genre may be retrieved from
the resource metadata. A track name and track number are
also retrieved for every track in the album. The set of resource
properties to be indexed may be determined based on com
monly used search criteria. The flow continues at block 214.
An index document, comprising the set of resource prop

erties, is generated for the resource (block 216). The index
document may be an RDF document. Based on the resource
index schema, one or more index documents may be gener
ated for the resource. For the music resource example, mul
tiple index documents are generated for the audio resource—
an RDF index document for the album, an RDF document for
each audio track on the album. Example RDF index docu
ments for the album and for audio tracks on the album are
depicted below.

<rdf:Description
Xmlins:rdf="http://www.w3.org/1999/02/22-rof-syntax-nsif'
Xmlins.jrs="http://jazz.net/xmlins/indexerv0.6#
Xmlins:ns="http://example.com/xmlins/musicii
rdfabout—"jiazzi resources musicobalbums album-1-
<dc:format application/xml-dc:formats

:resource="http://example.com/xmlins/musicialbum's
Keep the Faith <ns:name>

<ns:artist rodfresource="jazz/resources/musicdb/artists/artist-1">
<ns:genre-Rocksfns:genre
<rdf:Description>
<rdf:Description
Xmlins:rdf="http://www.w3.org/1999/02/22-rof-syntax-nsif'
Xmlins:jrs="http:/jazz.net/xmlins/indexeriv0.6#
Xmlins:ns="http://example.com/xmlins/musicii
rdfabout—"jiazzi resources musicobalbums album-1titrack-01
<rdf:typerdfiresource="http://example.com/xmlins/musiciftrack's
<ns:name>I believe <ns:name>
<ns:trackNumber rdfidatatype="http://
www.w3.org/2001/XMLSchematiinteger'>1
<ns:trackNumbers
</rdf:Description

In addition to indicating indexed resource properties, the
index documents can also specify a location of the resource
on the resource store. The flow continues at block 216.
The index documents for the resource are stored in an index

store (block 216). The index store may be an XML enabled
data store such as data stores provided by IBM DB2R,
Oracle(R) database server, or Microsoft SQL Server(R). The
XML enabled index store may allow clients to query
resources against the index documents using XML based
queries (written in XQuery). The XML enabled index store
may also allow RDF aware processors to query resources
against the index documents using RDF based queries (writ
ten in SPARQL). From block 218, the flow ends

FIG.3 is a flow diagram illustrating example operations for
using index documents to access heterogeneous resources.
Flow 300 begins at block 302.

10

15

25

30

35

40

45

50

55

60

65

8
A query for retrieving a resource from a resource store is

received (block 302). The query may be received from a client
application (e.g., a file search engine). A user may generate
the query by specifying a set of query parameters on an
interface presented by the client application. The query is
directed to an index store comprising index documents for
each resource on the resource store. The index documents
indicate resource properties and reference the resource in the
resource store. The query can be in any suitable query lan
guage based on the format of the index store. For example, the
index store may bean RDF store and the query may be written
in an RDF-based query language (e.g., SPARQL). The RDF
based query language is Suited to processing RDF index
documents and can generate concise queries. The following
code snippet illustrates an example query in SPARQL for
retrieving resources modified on or after Feb. 1, 2008.

PREFIXjrs: <http://jazz.net/xmlins/indexerv0.6#>
SELECT DISTINCT?subject
WHERE {?subject.jrs:resource-last-modified ?date.
FILTER(xsd:date(?date) >= xsd:date(“2008-02-01))}.

In another implementation, the index store may be an XML
enable store that allows the queries to be written in an XML
based query language (e.g., XQuery, XPath, etc). The follow
ing code Snippet illustrates an example query in XQuery for
retrieving audio resources belonging to a rock genre. The flow
continues at block 304.

declare namespacerdf = “http://www.w3.org/1999/02/22-rlf-syntax-nsti':
declare namespace music = http://example.com/xmlins/musici;
for Sindex in db2-fn:xmlcolumn(JRS RDF INDEX.RDF)/rdf:Description
where Sindex/rdf:type?(a)rdfiresource = “http://
example.com/xmlins/musicialbum
and Sindex/music:genre = “Rock
return Sindex/finistring(a)rdf;about

A set of query parameters are identified (block 304). The
query parameters can specify properties of the resource to be
retrieved. In some implementations, the query parameters
may also specify a resource category to narrow the scope of
the query. For example, the query parameters may indicate
that resources belonging to a music category should be
searched. As another example, the query parameters may
indicate that only resources with a filename extension of
“...txt should be searched. The query parameters can also
indicate user-specified values for search criteria. For
example, the query parameters can indicate a genre, an artist
name, album name, track name, track length, etc. for a music
resource to be retrieved. As another example, the query
parameters can indicate a name, a source, a resolution, a color
space, a number of pixels, etc. for an image resource to be
retrieved. In the above code Snippet, the query parameter in
the SPARQL query is “resource-last-modified.>=2008-02
01. The flow continues at block 306.

It is determined whether index documents indicating
resource properties satisfying the query parameters were
identified (block 306). Indexed resource properties in the
index documents can be searched to identify the index docu
ments with resource properties that satisfy the query param
eters (“matched index documents'). For the SPARQL query
(described with reference to block 302), the index documents
indicating a resource-last-modified date greater than Feb. 1,
2008 may be identified. The resource category, if specified as

US 8,275,888 B2

part of the query parameters, can help reduce the number of
index documents that should be searched to locate the
matched index documents. If it is determined that the index
documents indicating the resource properties satisfying the
query parameters were identified, the flow continues at block
308. Otherwise, the flow ends.
A location of the resource referenced by the matched index

document is determined (block 308). For example, the
matched index document can indicate a memory location
from which the resource can be retrieved. As another
example, the matched index document can indicate a server
address from which the resource can be retrieved. The flow
continues at block 310.
The resource is transmitted for presentation on the client

application (block 310). In some implementations, the actual
resource (e.g., an entire text document, a music file) may be
transmitted for presentation on the client. In another imple
mentation, a link to the location of the resource may be
presented. The resource may be downloaded from the
resource store and presented on the client after the user clicks
on the link. From block 310, the flow ends.

It should be noted that the operations described in the flow
diagrams (FIGS. 2-3) are examples meant to aid in under
standing embodiments, and should not be used to limit
embodiments or limit scope of the claims. Embodiments may
perform additional operations, fewer operations, operations
in a different order, operations in parallel, and some opera
tions differently. For instance, although FIG. 2 describes
identifying a single resource index schema for the resource, in
Some implementations, multiple resource index schemata
may be identified for the resource. As an example, it may be
determined (at block 204) that the resource is an XHTML file.
Therefore, a resource index schema for XML files and a
resource index schema for HTML files may be retrieved.
Resource properties specified by both the XML and HTML
resource index schema may be retrieved from the XHTML
file and converted into index documents.

Also, in some implementations, the client application may
keep track of resource properties specified by the user while
uploading the resources. For example, the client application
may record an indication that the user requested that genre,
artist name, and album name be indexed for audio resources.
In another implementation, the client application may inter
face with a server, retrieve a list of query parameters (e.g.,
indexed properties for resources in a resource category, pre
viously searched properties of resources in the resource cat
egory, indexed/searched properties for all resource catego
ries, etc.), and present search criteria. The user can indicate
query parameters by indicating values for the search criteria.

FIG. 4 is an example computer system 400 configured for
creating index documents for heterogeneous resources and
retrieving a resource based on the index documents. The
computer system 400 includes a processor 402. The processor
402 is connected to an input/output controller hub 424 (ICH),
also known as a South bridge, via a bus 422 (e.g., PCI, ISA,
PCI-Express, HyperTransport, etc). A memory unit 430 inter
faces with the processor 402 and the ICH 424. The main
memory unit 430 can include any Suitable random access
memory (RAM), such as static RAM, dynamic RAM, syn
chronous dynamic RAM, extended data output RAM, etc
The memory unit 430 comprises a resource-indexing unit

432. The resource-indexing unit 432 constructs index docu
ments such that a common query format can be used to access
resources from a plurality of resources in heterogeneous
resource formats as described in accordance with FIGS. 1-3.
The resource-indexing unit 432 identifies one or more
resource index schemata, which identify a set of resource

5

10

15

25

30

35

40

45

50

55

60

65

10
properties that should be indexed. Once the set of resource
properties are identified, the resource-indexing unit 432 gen
erates index documents that indicate the identified set of
resource properties. The index documents are in a uniform
format independent of the resource format. For example, an
index document for an audio resource and an index document
for an image resource may be in the same format (e.g., an
RDF format). On receiving a query to access the resource, the
resource-indexing unit 432 can compare query parameters
with resource properties indicated by the index documents,
identify index documents indicating resource properties that
match all the query parameters, and accordingly retrieve
resources referenced by the identified index documents.
The ICH 424 connects and controls peripheral devices. In

FIG.4, the ICH 424 is connected to IDE/ATA drives 408 and
to universal serial bus (USB) ports 410. The ICH 424 may
also be connected to a keyboard 412, a selection device 414,
firewire ports 416, CD-ROM drive 418, and a network inter
face 420. The ICH 424 can also be connected to a graphics
controller 404. The graphics controller is connected to a dis
play device 406 (e.g., monitor). In some embodiments, the
computer system 400 can include additional devices and/or
more than one of each component shown in FIG. 4 (e.g., video
cards, audio cards, peripheral devices, etc.). For example, in
Some instances, the computer system 400 may include mul
tiple processors, multiple cores, multiple external CPUs. In
other instances, components may be integrated or Subdivided.

FIG. 5 is an example block diagram configured for index
ing and querying heterogeneous resources. The system 500
comprises servers 522 and 520 and clients 502,504, and 508.
The server 522 comprises a resource-indexing unit 528, a
resource store 524, a resource index schema database 530,
and an index store 526. The resource-indexing unit 528 is
coupled with the resource store 524, the resource index
schema database 530, and the index store 526. The client
(e.g., the client 504) comprises a client application 506,
which enables the user to upload resources to the resource
store 524 and presents resources retrieved from the resource
Store 524.
The resource-indexing unit 528 constructs index docu

ments for resources in the resource store 524. The resource
indexing unit 528 constructs the index documents based on a
resource index schema (in the resource index schema data
base 530). The resource index schema indicates a set of
resource properties that should be indexed. The index docu
ments are stored in the index store 526. The resource indexing
unit 528 accepts queries written in a standard query format
(e.g., XML based XQuery, RDF based SPARQL, etc) and
compares query parameters with resource properties indi
cated by the index documents in the index store 526. The
resource indexing-unit 528 identifies index documents indi
cating resource properties that match all the query parameters
and accordingly retrieves resources referenced by the identi
fied index documents. For example, the resource store 524
may hold documents, images, structured XML files, files in
legacy or proprietary formats, etc. The resources in the
resource store 524 have properties and relationships that cli
ents 502,504, and 508 can use to write queries to retrieve the
resources. Because the index documents are in a standard
format (e.g., an RDF format) and are not in heterogeneous
formats, the query can be generated (e.g., by the client appli
cation 506 based on user inputs) independent of the format of
the resource being queried.
The servers 520 and 522 and the clients 502,504, and 508

communicate via a communication network 514. The com
munication network 514 can include any technology (e.g.,
Ethernet, IEEE 802.11n, SONET, etc) suitable for passing

US 8,275,888 B2
11

communication between the servers 520 and 522 and the
clients 502, 504, and 508. Moreover, the communication
network 514 can be part of other networks, such as cellular
telephone networks, public-switched telephone networks
(PSTN), cable television networks, etc. Additionally, the
servers 520 and 522 and the clients 502,504, and 508 can be
any suitable devices capable of executing Software in accor
dance with the embodiments described herein. In some
implementations, the resources may be stored on the server
520, separate from the resource-indexing unit 528, the
resource index schema database 530, and the index docu
ments database 526. In some implementations, the resource
indexing unit 528 on the server 522 may be implemented as a
chip, plug-in, code in memory, etc.

Embodiments may take the form of an entirely hardware
embodiment, a Software embodiment (including firmware,
resident Software, micro-code, etc.) or an embodiment com
bining software and hardware aspects that may all generally
be referred to herein as a “circuit,” “module' or “system.”
Furthermore, embodiments of the inventive subject matter
may take the form of a computer program product embodied
in any tangible medium of expression having computer
usable program code embodied in the medium. The described
embodiments may be provided as a computer program prod
uct, or software, that may include a machine-readable
medium having stored thereon instructions, which may be
used to program a computer system (or other electronic
device(s)) to perform a process according to embodiments,
whether presently described or not, since every conceivable
variation is not enumerated herein. A machine-readable
medium includes any mechanism for storing or transmitting
information in a form (e.g., software, processing application)
readable by a machine (e.g., a computer). The machine-read
able medium may include, but is not limited to, magnetic
storage medium (e.g., floppy diskette); optical storage
medium (e.g., CD-ROM); magneto-optical storage medium;
read only memory (ROM); random access memory (RAM);
erasable programmable memory (e.g., EPROM and
EEPROM); flash memory; or other types of medium suitable
for storing electronic instructions. In addition, embodiments
may be embodied in an electrical, optical, acoustical or other
form of propagated signal (e.g., carrier waves, infrared sig
nals, digital signals, etc.), or wireline, wireless, or other com
munications medium.

Computer program code for carrying out operations of the
embodiments may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
Such as the “C” programming language similar programming
languages. The program code may execute entirely on a
user's computer, partly on the user's computer, as a stand
alone software package, partly on the user's computer and
partly on a remote computer or entirely on the remote com
puter or server. In the latter scenario, the remote computer
may be connected to the user's computer through any type of
network, including a local area network (LAN), a personal
area network (PAN), or a wide area network (WAN), or the
connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro
vider).

While the embodiments are described with reference to
various implementations and exploitations, it will be under
stood that these embodiments are illustrative and that the
scope of the inventive subject matter is not limited to them. In
general, techniques for indexing heterogeneous resources as
described herein may be implemented with facilities consis

10

15

25

30

35

40

45

50

55

60

65

12
tent with any hardware system or hardware systems. Many
variations, modifications, additions, and improvements are
possible.

Plural instances may be provided for components, opera
tions, or structures described herein as a single instance.
Finally, boundaries between various components, operations,
and data stores are somewhat arbitrary, and particular opera
tions are illustrated in the context of specific illustrative con
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the inventive subject matter.
In general, structures and functionality presented as separate
components in the exemplary configurations may be imple
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improvements
may fall within the scope of the inventive subject matter.
What is claimed is:
1. A method comprising:
receiving a notification indicating that a resource is stored

in a resource store;
determining a resource category for the resource based, at

least in part, on metadata of the resource, in response to
said receiving the notification indicating that the
resource is stored in the resource store;

determining whether a resource index schema for the
resource can be identified based on the resource cat
egory for the resource;

in response to determining that the resource index schema
for the resource category can be identified,
identifying the resource index schema for the resource,

wherein the resource index schema indicates a
resource property of the resource:

determining, from the metadata of the resource, a prop
erty value for the resource property indicated in the
resource index schema for the resource category:

creating a first index document that has a format inde
pendent of a format of the resource, that indicates the
resource property and the property value, and that
references the resource in the resource store of het
erogeneous native format resources;

in response to determining that the resource index schema
for the resource cannot be identified,
identifying a generic schema that indicates at least one

property related to storing the resource in a resource
Store;

identifying a property value of the resource for the at
least one property indicated in the generic schema:

creating a second index document that has a format
independent of a format of the resource, that indicates
the at least one property identified in the generic
schema and the corresponding property value, and
that references the resource in the resource store of
heterogeneous native format resources; and

storing the first index document or the second index docu
ment in an index store that comprises a plurality of index
documents, wherein the first index document, the Sec
ond index document, and the plurality of index docu
ments have common formatting.

2. The method of claim 1 wherein the index document
comprises a resource description framework based index
document and indicates a location of the resource in the
reSOurce Store.

3. The method of claim 1, wherein the at least one property
related to storing the resource in the resource store comprise
at least one of a date on which the resource was stored,
information identifying a user who stored the resource,

US 8,275,888 B2
13

device identifiers of an electronic device used for storing the
resource, and an Internet address of a website used to upload
the resource to the resource store.

4. A method comprising:
determining a query parameter specifying a property value

of a resource property of a resource based, at least in
part, on a received query, wherein the query is generated
to retrieve the resource from a resource store of hetero
geneous native format resources;

searching through an index store that comprises a plurality
of index documents to identify an index document that
indicates the resource property and the corresponding
property value specified in the query parameter, wherein
the plurality of index documents have common format
ting:

determining whether the index store comprises the index
document that indicates the resource property and the
corresponding property value specified in the query
parameter;

in response to determining that the index store comprises
the index document that indicates the resource property
and the corresponding property value specified in the
query parameter,
identifying the index document that indicates the

resource property and the property value specified in
the query parameter and that references the resource
in the resource store; and

retrieving the resource from the resource store based on
said identifying the index document that indicates the
resource property and the property value specified in
the query parameter and that references the resource
in the resource store;

in response to determining that the index store does not
comprise the index document that indicates the resource
property and the corresponding property value specified
in the query parameter;
determining an inability to identify the index document

that references the resource in the resource Store; and
presenting a notification indicating the inability to iden

tify the resource in the resourcestore that is associated
with the resource property and the corresponding
property value specified in the query parameter.

5. The method of claim 4, further comprising identifying a
location of the resource based on said identifying the index
document.

6. The method of claim 4, further comprising one of pre
senting the resource, transmitting the resource for presenta
tion on a client, and presenting a link to a location of the
SOUC.

7. A computer program product for indexing heteroge
neous resources, the computer program product comprising:

a non-transitory computer usable storage medium having
computer usable program code embodied therewith, the
computer usable program code configured to:

receive a notification indicating that a resource is stored in
a resource Store;

determine a resource category for the resource based, at
least in part, on metadata of the resource, in response to
the computer usable program code receiving the notifi
cation indicating that the resource is stored in the
resource Store;

determine whether a resource index schema for the
resource can be identified based on the resource cat
egory for the resource;

in response to determining that the resource index schema
for the resource category can be identified,

10

15

25

30

35

40

45

50

55

60

65

14
identify the resource index schema for the resource,

wherein the resource index schema indicates a
resource property of the resource:

determine, from the metadata of the resource, a property
value for the resource property indicated in the
resource index schema for the resource;

create a first index document that has a format indepen
dent of a format of the resource, that indicates the
resource property and the property value, and that
references the resource in the resource store of het
erogeneous native format resources;

in response to determining that the resource index schema
for the resource cannot be identified,
identify a generic schema that indicates at least one

property related to storing the resource in a resource
Store;

identify a property value of the resource for the at least
one property indicated in the generic schema:

create a second index document that has a format inde
pendent of a format of the resource, that indicates the
at least one property identified in the generic schema
and the corresponding property value, and that refer
ences the resource in the resource Store of heteroge
neous native format resources; and

store the first index document or the second index docu
ment in an index store that comprises a plurality of index
documents, wherein the first index document, the Sec
ond index document, and the plurality of index docu
ments have common formatting.

8. The computer program product of claim 7, wherein the
index document comprises a resource description framework
based index document and indicates a location of the resource
in the resource store.

9. The computer program product of claim 7, wherein the at
least one property related to storing the resource in the
resource store comprise at least one of a date on which the
resource was stored, information identifying a user who
stored the resource, device identifiers of an electronic device
used for storing the resource, and an Internet address of a
website used to upload the resource to the resource store.

10. The computer program product of claim 7, wherein the
computer usable program code is further configured to:

determine a query parameter specifying the property value
of the resource property of the resource based, at least in
part, on a received query, wherein the query is generated
to retrieve the resource from the resource store;

search through the index store that comprises the plurality
of index documents to identify the index document that
indicates the resource property and the corresponding
property value specified in the query parameter,

determine whether the index store comprises the index
document that indicates the resource property and the
corresponding property value specified in the query
parameter,

in response to determining that the index store comprises
the index document that indicates the resource property
and the corresponding property value specified in the
query parameter,
identify the index document that indicates the resource

property and the property value specified in the query
parameter and that references the resource in the
resource store; and

retrieve the resource from the resource store based on the
computer usable program code identifying the index
document that indicates the resource property and the
property value specified in the query parameter and
that references the resource in the resource store.

US 8,275,888 B2
15

11. The computer program product of claim 10, further
comprising one of the computerusable program code config
ured to present the resource, the computer usable program
code configured to transmit the resource for presentation on a
client, and the computer usable program code configured to
present a link to a location of the resource.

12. The computer program product of claim 10, wherein
the computer usable program code is further configured to:

in response to determining that the index store does not
comprise the index document that indicates the resource
property and the corresponding property value specified
in the query parameter,
determine an inability to identify the index document

that references the resource in the resource Store; and
present a notification indicating the inability to identify

the resource in the resource store that is associated
with the resource property and the corresponding
property value specified in the query parameter.

13. An apparatus comprising:
a processor;
a network interface coupled with the processor, the net
work interface operable to receive a notification indicat
ing that a resource is stored in a resource store;

the resource store for storing heterogeneous native format
resources;

an index store comprising a plurality of index documents
with common formatting; and

a resource-indexing unit operable to
determine a resource category for the resource based, at

least in part, on metadata of the resource, in response
to the network interface receiving the notification
indicating that the resource is stored in the resource
Store;

determine whether a resource index schema for the
resource can be identified based on the resource cat
egory for the resource;

in response to the resource-indexing unit determining
that the resource index Schema for the resource cat
egory can be identified,
identify the resource index schema for the resource,

wherein the resource index schema indicates a
resource property of the resource;

determine, from the metadata of the resource, a prop
erty value for the resource property indicated in the
resource index schema for the resource;

create a first index document that has a format inde
pendent of a format of the resource, that indicates
the resource property and the property value, and
that references the resource in the resource store of
heterogeneous native format resources;

in response to the resource-indexing unit determining
that the resource index schema for the resource cannot
be identified,
identify a generic schema that indicates at least one

property related to storing the resource in a
resource Store;

identify a property value of the resource for the at least
one property indicated in the generic Schema:

create a second index document that has a format
independent of a format of the resource, that indi
cates the at least one property identified in generic
Schema and the corresponding property value, and
that references the resource in the resource store of
heterogeneous native format resources; and

store the first index document and the second index
document in an index store that comprises the plural
ity of index documents, wherein the first index docu

5

10

15

25

30

35

40

45

50

55

60

65

16
ment, the second index document, and the plurality of
index documents have common formatting.

14. The apparatus of claim 13, wherein the resource-index
ing unit is further operable to:

determine a query parameter specifying the property value
of the resource property of the resource based, at least in
part, on a received query, wherein the query is generated
to retrieve the resource from the resource store;

search through the index store that comprises the plurality
of index documents to identify the index document that
indicates the resource property and the corresponding
property value specified in the query parameter,

determine whether the index store comprises the index
document that indicates the resource property and the
corresponding property value specified in the query
parameter,

in response to the resource-indexing unit determining that
the index store comprises the index document that indi
cates the resource property and the corresponding prop
erty value specified in the query parameter,
identify the index document that indicates the resource

property and the property value specified in the query
parameter and that references the resource in the
resource store; and

retrieve the resource from the resource store based on the
resource-indexing unit identifying the index docu
ment that indicates the resource property and the
property value specified in the query parameter and
that references the resource in the resource store;

in response to the resource-indexing unit determining that
the index store does not comprise the index document
that indicates the resource property and the correspond
ing property value specified in the query parameter;
determine an inability to identify the index document

that references the resource in the resource store; and
present a notification indicating the inability to identify

the resource in the resource store that is associated
with the resource property and the corresponding
property value specified in the query parameter.

15. The apparatus of claim 13, wherein the resource-index
ing unit comprises machine-readable media.

16. The method of claim 1, comprising:
in response to determining that the resource index schema

for the resource category can be identified,
determining whether the metadata of the resource com

prises the property value for the resource property
indicated in the resource index schema for the
resource category:

in response to determining that the metadata of the
resource comprises the property value for the
resource property indicated in the resource index
schema for the resource category,
said determining, from the metadata of the resource,

the property value for the resource property indi
cated in the resource index schema for the resource
category:

in response to determining that the metadata of the
resource does not comprise the property value for the
resource property indicated in the resource index
schema for the resource category,
said identifying the generic schema that indicates the

at least one property related to storing the resource
in the resource Store and identifying the property
value of the resource for the at least one property
indicated in the generic schema.

US 8,275,888 B2
17

17. The method of claim 1, further comprising:
in response to determining that the resource index schema

for the resource category can be identified,
identifying a second resource index schema for the

resource category, wherein the second resource index
schema indicates a second resource property of the
resource:

determining, from the metadata of the resource, a second
property value corresponds to the second resource
property indicated in the second resource index
schema for the resource category:

creating a third index document that has a format inde
pendent of a format of the resource, that indicates the
second resource property and the corresponding sec
ond property value, and that references the resource in
the resource store; and

storing the third index document in the index store.

10

15

18
18. The method of claim 4, wherein said determining the

query parameter specifying the property value of the resource
property of the resource comprises:

receiving an indication of a resource category associated
with the resource to be accessed;

presenting a plurality of resource properties associated
with the resource category, wherein the plurality of
resource properties are determined based on at least one
of previously indexed resource properties of one or more
resources that belong to the resource category and pre
viously searched resource properties associated with
one or more resources that belong to the resource cat
egory; and

detecting a selection of the resource property of the plural
ity of resource properties prior to said determining the
query parameter specifying the property value of the
resource property of the resource.

k k k k k

