
US009 170821B1

(12) United States Patent (10) Patent No.: US 9,170,821 B1
Palaniappan et al. (45) Date of Patent: Oct. 27, 2015

(54) AUTOMATINGWORKFLOW VALIDATION 6,182,245 B1* 1/2001 Akin et al. 714,38.14
2003, OO18508 A1 1/2003 Schwanke

(75) Inventors: Ramanathan Palaniappan, Seattle, WA 3.99. b A. 1 58: NAal
(US); Gideon Shavit, Seattle, WA (US); 2006/0179422 A1* 8, 2006 Gortler 717/124
Alan M. Steele, Seattle, WA (US); 2006/0195347 A1 8/2006 Bultmeyer et al.
Simon K. Johnston, Seattle, WA (US) 2008/0243902 A1 10/2008 Rong et al.

2009,028.1865 A1 11/2009 Stoitsev

(73) Assignee: Amazon Technologies, Inc., Seattle, WA 2011/0055673 All 3/2011 Teng et al.
US 2011/0113287 A1* 5/2011 Gururaj........................... 714/37
(US) 2013/0219226 A1* 8, 2013 Hachmeister et al. 714,38.1

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 252 days. Primary Examiner — Emerson Puente

(21) Appl. No.: 13/569,537 Assistant Examiner — Zhi Chen
y x- - - 9 (74) Attorney, Agent, or Firm — Thomas Horstemeyer, LLP

(22) Filed: Aug. 8, 2012
(57) ABSTRACT

(51) Int. Cl.
G06F 9/44 (2006.01) A test document associated with a workflow definition is
G06O 10/06 (2012.01) obtained, the test document including an input for an action of
G06F II/07 (2006.01) the workflow definition and an expected state for the work

(52) U.S. Cl. flow definition based on the input. The input is delivered for
CPC G06F 9/44 (2013.01); G06F 11/0751 the action of a workflow instance, the workflow instance

(2013.01); G06O 10/0633 (2013.01) being an instance of the workflow definition executed by a
(58) Field of Classification Search workflow engine, and the action determined based upon a

None present state of the workflow instance. A next state of the
See application file for complete search history. workflow instance is obtained, where the next state is deter

mined by the workflow engine based upon the present state,
(56) References Cited the action and the input. The next state of the workflow

instance is compared to the expected State of the test docu
U.S. PATENT DOCUMENTS ment.

5.937,388 A 8, 1999 Davis et al.
5,987,422 A * 1 1/1999 Buzsaki 705/713 24 Claims, 5 Drawing Sheets

O)

Computing environments

Cata Stogi: 12

Wikicy Airkflow Workiw
instance instance OC O. instance
133a 33 133N Workfow

Workf ifork fork histories orktow fkly orkow
sfiniti Dsfinition OOC Definition 3S

453

est
cert Document OOC
155a

A. 7. w

Workflow Engine Synthesis Egins
27

Colpuig evices
6.

Application 63

U.S. Patent Oct. 27, 2015 Sheet 1 of 5 US 9,170,821 B1

O

Compting Environment is

Data SiOE 2

Workflow Wikify Fifki;
iristafice Stance isia:Ce

333 33 33N Workfor
isirises

Jirky sixty irky 38
ifiti is finition finition o

153a 353E 153:

est est s
guist OC. Yet sciet

155a 155- Wickfor
logs
39

Activity ivity Activity
733 173;

Workflow Engine Test Engine Synthesis Engine
123 125 27

Network
9

(origiiting evice(s)
iO3.

Applicati: ; S3

U.S. Patent Oct. 27, 2015 Sheet 2 of 5

est Wikiliy
Engine Engine

25 t23

Activity
73

Reguest Workios
State

roce
if fow Saise

Provide input of
exi Action

Activity on piete

Srcia
jofo State

FIG. 2

US 9,170,821 B1

28

U.S. Patent Oct. 27, 2015 Sheet 3 of 5

327

{}{ain a test coC&nt for a
Wikiw is tissi

38 w
isitiate a Workflow instance to

& Sesied

353

Acci's tie pieSeri state of
tie Wiki A stage

irit
Required?

Frovide inst for an actio of the workflow
instance to the workfow rigins

Acquise the inext state
resaiting from the action

Compare the next state of the workow
instance with the expected state from the test

test icient

States
C

Generate and eccid a 3xception event in tis
wiki tow log of the inexpected state of the

Workflow instance aid initiate a respisive action

US 9,170,821 B1

U.S. Patent Oct. 27, 2015 Sheet 4 of 5

4.59

Citain histories of prior executions of
Wikiw isia &es

identify the workiow definitions
'epresented by the workflow instances

Cofreiate the Ceirion paths of execution used by the
wikiw instances fit a give workflow definitics

{See aise is of ice test Sier8 OS
ased upon the historica actions, it is,
aid resporises of tie Cofiri paths

Set & test Scenais into a test icient
assiciaised with the Wokiiw definitio

Wickfows
fetal

US 9,170,821 B1

17

U.S. Patent Oct. 27, 2015 Sheet 5 of 5 US 9,170,821 B1

Conting Evironment 3

Cinguing evice S.
via nory(ies) is

Workflow Egire 23

Cessors 9. Test Engine 25
aia State

Syrtilesis Eigile 27

FIG. 5

US 9,170,821 B1
1.

AUTOMATINGWORKFLOWVALIDATION

BACKGROUND

Workflow management systems typically model abusiness
process by defining a workflow comprising a set of tasks to
produce a result. Complex business processes may necessi
tate complex workflows. It can be difficult to validate work
flows with current technologies that do not offer the flexibility
needed to handle significant complexity.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better under
stood with reference to the following drawings. The compo
nents in the drawings are not necessarily to scale, emphasis
instead being placed upon clearly illustrating the principles of
the disclosure. Moreover, in the drawings, like reference
numerals designate corresponding parts throughout the sev
eral views.

FIG. 1 is a drawing of a networked environment according
to various embodiments of the present disclosure.

FIG. 2 is a drawing of a communication diagram that
illustrates one example of communication between various
components in a computing environment in the networked
environment of FIG. 1 according to an embodiment of the
present disclosure.

FIG. 3 is a flowchart illustrating one example of function
ality implemented as portions of a test engine executed in the
computing environment in the networked environment of
FIG. 1 according to various embodiments of the present dis
closure.

FIG. 4 is a flowchart illustrating one example of function
ality implemented as portions of a synthesis engine executed
in the computing environment in the networked environment
of FIG. 1 according to various embodiments of the present
disclosure.

FIG. 5 is a schematic block diagram that provides one
example illustration of the computing environment employed
in the networked environment of FIG. 1 according to various
embodiments of the present disclosure.

DETAILED DESCRIPTION

Disclosed are various embodiments facilitating validation
of the operation of one or more actions of a workflow. A
workflow definition may contain many possible paths
through the various possible actions of a workflow. In order to
verify that the workflow definition operates as expected, a test
document may be created that specifies input for one or more
ofactions of the workflow definition, as well as a correspond
ing expected State resulting from each of the specified actions.
In some embodiments, portions of the test document may be
created by a synthesis engine based upon the history from
prior instances of the workflow definition.

To begin the validation, a test engine may obtain the test
document specifying input to one or more actions of a work
flow instance associated with the workflow definition. The
test engine may provide the input to a workflow engine
executing the workflow instance, then validate that the post
action state of the workflow instance matches the expected
state specified in the test document. The expected State may
be used to ensure that the workflow instance takes the proper
path through the actions of the workflow definition, and that
the history for the workflow instance is updated correctly. In

10

15

25

30

35

40

45

50

55

60

65

2
the following discussion, a general description of the system
and its components is provided, followed by a discussion of
the operation of the same.

With reference to FIG. 1, shown is a networked environ
ment 100 according to various embodiments. The networked
environment 100 includes a computing environment 103 in
data communication with one or more computing devices 106
by way of a network 109. The network 109 includes, for
example, the Internet, intranets, extranets, wide area net
works (WANs), local area networks (LANs), wired networks,
wireless networks, or other Suitable networks, etc., or any
combination of two or more Such networks.
The computing environment 103 may comprise, for

example, a server computer or any other system providing
computing capability. Alternatively, the computing environ
ment 103 may comprise a plurality of servers or other com
puting devices that are arranged, for example, in one or more
server banks or computer banks or other arrangements. For
example, the computing environment 103 may comprise a
cluster computing resource, a grid computing resource, and/
or any other distributed computing arrangement. The com
puting environment 103 may be located in a single installa
tion or may be distributed among many different
geographical locations.

Various applications and/or other functionality may be
executed in the computing environment 103 according to
various embodiments. Also, various data is stored in a data
store 112 that is accessible to the computing environment
103. The data store 112 may be representative of a plurality of
data stores 112 as can be appreciated. The data stored in the
data store 112, for example, is associated with the operation
of the various applications and/or functional entities
described below.
The components executed on the computing environment

103, for example, include a workflow engine 123, a test
engine 125, a synthesis engine 127, and other applications,
services, processes, systems, engines, or functionality not
discussed in detail herein. The workflow engine 123 is
executed to orchestrate and execute instances of workflows
(“workflow instances') as will be described. The workflow
engine 123 is a generic workflow processor that may embody
a functional expression of a given workflow definition.
Accordingly, the workflow engine 123 is a stateless entity that
processes the workflow instances according to the respective
workflow definition and workflow history. In this respect, the
workflow engine 123 is configured to identify the activities,
actions, or steps to be performed for a specific workflow
instance based upon the respective workflow definition as
will be described. In one embodiment, the workflow engine
123 comprises a class that may be instantiated multiple times.
Thus, there may be many instances of various workflow
engines 123 executed by the computing environment 103 at
any given time.
The test engine 125 is executed to facilitate automated

testing of workflow instances according to a pre-defined test
document. The test engine 125 may communicate with the
workflow engine 123 and/or other services using various
protocols such as, for example, simple object access protocol
(SOAP), representational state transfer (REST), remote pro
cedure call (RPC), and/or other protocols for inter-process
communication. The synthesis engine 127 is executed togen
erate testing scenarios used within the test documents based
upon prior executions of workflow instances. In order to
produce the testing scenarios, the synthesis engine 127 may
examine the workflow logs produced by the workflow engine
123 during the execution of the various workflow instances.

US 9,170,821 B1
3

The data stored in the data store 112 includes, for example,
several workflow instances 133a-N, workflow histories 136,
workflow logs 139, several workflow definitions 153a-N,
several test documents 155a-N, several activities 173a-N,and
potentially other data. Each workflow instance 133 is an
instance of a given workflow definition 153 and may be
represented by the data making up the workflow instance 133
in its entirety, or a workflow instance 133 may be represented
by virtue of an identifier that is associated with data embody
ing a workflow instance 133 stored elsewhere. The workflow
represented by each workflow instance 133 is orchestrated by
the workflow engine 123.

Each workflow history 136 is associated with a respective
one of the workflow instances 133 processed by the workflow
engine 123. The workflow histories 136 each comprise, for
example, a list of events that have occurred during the execu
tion of a given workflow instance 133 over time. To this end,
the events listed in a given workflow history 136 act as a
record of the execution of a workflow instance 133. Such
events may be expressed using, for example, extensible
markup language (XML), JavaScript object notation (JSON).
or other such languages. Individual workflow logs 139
include various data related to corresponding workflow
instances 133a-N executed previously by the workflow
engine 123. The workflow logs 139 may include the workflow
history 136 for a given workflow instance 133, identifiers for
the workflow instance 133 and the associated workflow defi
nition 153, data used as input for various states of the work
flow instance 133, exceptions or errors reported during execu
tion of the workflow instance 133, and/or other data
associated with a previous execution of one or more workflow
instances 133a-N.

Each workflow definition 153 defines the activities,
actions, and/or steps (collectively referred to as the “actions')
to be carried out for each associated workflow instance 133.
In some embodiments, the actions of a workflow definition
153 may comprise one or more subordinate tasks (“sub
tasks”). In some embodiments, the workflow instance may
not progress to the next action until each of the Sub-tasks is
complete. In other embodiments, the workflow instance 133
may progress to the next action concurrently with the execu
tion of the sub-tasks. The workflow definition 153 may be
expressed using, for example, XML process definition lan
guage (XPDL), business process execution language
(BPEL), or other workflow process definition languages.

Each test document 155 corresponds to a workflow defini
tion 153 and provides an input for one or more states of a
workflow instance 133 under test and a corresponding
expected resulting state for the workflow instance 133. In
some embodiments, a test document 155 may be represented
as an extensible markup language (XML) document or a
JavaScript Object Notation (JSON) document. The test docu
ment 155 may provide an input for a subset of the possible
states along one or more possible paths of execution of the
workflow definition 153. In some embodiments, the test
document 155 may provide inputs for one or more sub-tasks
of an action within the workflow definition 153. In other
embodiments, the test document 155 may specify a respon
sive action to initiate in the event that the expected resulting
state of the workflow instance 133 under test does not match
the actual resulting state of the workflow instance. As a non
limiting example, the responsive action may comprise log
ging the event, generating an alarm, repeating the action that
resulted in the unexpected state, restarting the workflow
instance 133 under test, and/or other possible responsive
actions.

5

10

15

25

30

35

40

45

50

55

60

65

4
Each of the activities 173 may be executed by the comput

ing environment 103 to perform or facilitate performance of
one or more actions, tasks, or functions that comprise at least
a portion of a given workflow instance 133 based upon a
request from the workflow engine 123 as will be described.
The activities 173 may facilitate performance of one or more
actions, tasks, or functions of a given workflow instance 133
by, for example, initiating execution of one or more applica
tions, providing notice to assignees of tasks, monitoring per
formance of the tasks, and/or other methods of facilitation as
can be appreciated. In some embodiments, the actions, tasks,
or functions facilitated by the activities 173 may be per
formed asynchronously. In other embodiments, the applica
tions initiated by the activities 173 may be performed in
computing devices remote to the computing environment
103. The activities 173 may comprise a class that is instanti
ated multiple times to handle the workflow processing load
from the workflow engine 123 as will be described.
The computing device or devices 106 may comprise, for

example, a server computer or any other system providing
computing capability. Alternatively, the computing device
106 may comprise a plurality of servers or other computing
devices that are arranged, for example, in one or more server
banks or computerbanks or other arrangements. For example,
the computing device 106 may comprise a cluster computing
resource, a grid computing resource, and/or any other distrib
uted computing arrangement. The computing device 106 may
be located in a single installation or may be distributed among
many different geographical locations.
The components executed on the computing device or

devices 106, for example, include an application 163 and
other applications, services, processes, Systems, engines, or
functionality not discussed in detail herein. The application
163 is executed to perform one or more actions of a given
workflow instance 133. The application 163 may obtain input
for the actions to be performed for a workflow instance 133
and may return the result of the action based upon the input.
As a non-limiting example, the application 163 may perform
the action of initiating shipment of the items from a paid
order. The application 163 may obtain an order number as
input, then provide a shipment confirmation number as a
result of the action performed.
The networked environment 100 is configured to execute

workflow instances 133 that perform various functions. One
example of such a workflow that may be embodied in work
flow instances 133 might be a process to implement the pay
ment for a purchase of an item online over the Internet. Such
a process may involve various actions or tasks Such as input
ting a payment instrument Such as a credit card number or
other instrument, performing a fraud check on the payment
instrument, and sending a shipment request to a fulfillment
center to implement the fulfillment of the order. There may be
many other actions or tasks involved in Such a process, where
the above actions or tasks are described merely for the pur
poses of illustration.
To this end, a workflow may involve various components,

persons, applications, and other entities that are involved in
the processing of data to complete a workflow instance 133.
In the case of the processing of payment for an order, for
example, Such an order may be processed through various
departments and other entities for ultimate authorization and
purchase. A given workflow instance 133 may involve human
intervention at Some point, or may be entirely automated. The
human intervention may involve interaction with a given
activity 173 on the part of an individual as can be appreciated.

Next, a general discussion of the networked environment
100 is described with respect to the execution of various

US 9,170,821 B1
5

workflow instances 133 according to various embodiments.
To begin, an operator or an application external to the net
worked environment 100 may interact with a test engine 125
to initiate testing of a particular workflow definition 153. To
this end, a test document 155 associated with the workflow
definition 153 may be obtained by the test engine 125. In
response, the test engine 125 may create or initiate creation of
a workflow instance 133 associated with the workflow defi
nition 153 under test. The workflow engine 123 ultimately
orchestrates the execution of the workflow instance 133,
while the direction and input necessary for the execution of
the workflow instance 133 is provided by the test engine 125
based upon the test document 155.

To this end, the workflow engine 123 retrieves any work
flow history 136 and workflow definition 153 from the data
store 112 for such workflow instance 133. In some embodi
ments, an initial state for the workflow instance 133 may be
specified by the test document 155. The workflow engine 123
also obtains the data associated with the respective workflow
instance 133 from the data store 112 and/or other location.
Once the respective workflow history 136, workflow defini
tion 153, and other information embodying the workflow
instance 133 are obtained, then the workflow engine 123 may
begin processing the workflow instance 133. The test engine
125 may establish a communications interface with the work
flow engine 123 such that the test engine 125 obtains the state
of the workflow instance 133, as well as provides input
required for one or more of the various actions of the work
flow instance 133.
Once the workflow history 136 and other information

embodying the workflow instance 133 are received by the
respective workflow engine 123, then the workflow engine
123 processes the workflow definition 153 and examines the
workflow history 136 in order to determine a next action to be
taken for the respective workflow instance 133. To this end,
the generic workflow engine 123 becomes a functional
embodiment of the workflow definition 153 that is configured
to review the workflow history 136 and identify a next action
to be taken for the workflow instance 133.

The workflow engine 123 may determine that the next
action of the workflow instance 133 requires input that would
typically be provided by a user oran application executing on
a computing device. Upon obtaining the state of the workflow
instance 133, the test engine 125 may determine if the test
document 155 specifies an input for the next action. If such an
input is provided in the test document 155, the test engine 125
may communicate the input to the workflow engine 123.
Alternatively, if the test document 155 does not specify an
input for a given action, the test engine 125 may obtain the
input from a user through a user-interface and/or from another
input source as can be appreciated.
As a non-limiting example, an action of a workflow defi

nition 153 may be to obtain an order number of an order to be
processed for shipping. During ordinary operation of the
workflow instances 133, the workflow engine 123 may obtain
this order number from a user, from the data store 112, or
through another operation specified in the workflow defini
tion 153. However, if the test document 155 associated with
the workflow definition 153 under test specifies an input for
the particular action, the test engine 125 may bypass the input
procedure defined for the action. In the present example, the
test engine 125 may cause the workflow engine 123 executing
the workflow instance 133 to bypass the input source for the
action and instead provide the order number (i.e., the input)
specified in the test document 155.

In some embodiments, the test document 155 may contain
references, Scripts, network links, and/or other dynamic,

10

15

25

30

35

40

45

50

55

60

65

6
“run-time” sources for providing input. Furthermore, a test
document 155 may contain a mixture of Static and dynamic
input sources. Returning to the previous example, the test
document 155 may specify one or more order numbers, as
well as, for example, a uniform resource identifier (URI)
providing a link to another source of order numbers.

In other embodiments, the action of a workflow definition
153 may comprise one or more sub-tasks, which may them
selves continue to be further subdivided. As with the singular
actions, the test document 155 associated with the workflow
definition 153 may specify input data associated with one or
more of the Sub-tasks and/or other lineal tasks of an action. As
a non-limiting example, an action of a workflow definition
153 may be to obtain payment for an order. The action may be
divided into Sub-tasks Such as obtaining a payment method
from a user, Submitting a request for payment using the pay
ment method, and providing confirmation of the payment
processing to the user.
Upon obtaining the input for the action of the workflow

instance 133, the workflow engine 123 schedules an activity
173 that performs or facilitates performance of the next action
and any sub-tasks to be executed with respect to the workflow
instance 133. To this end, this may involve placing the work
flow instance 133 in a queue associated with a respective
activity 173 to be performed.
Once the activity 173 indicates the next action has been

completed, the activity 173 sends a message to the workflow
engine 123 that such processing is complete. Thereafter, the
test engine 125 may compare the data associated with the
state of the workflow instance 133 after completing the activ
ity 173 with the expected state of the workflow instance
specified by the test document 155. Such a testing scenario
may permit testing of not only the operation of the workflow
instance 133, but potentially the operation of one or more
applications 163 carrying out the action. For example, an
action of a workflow definition 153 may be to obtain payment
for an order. The action may be divided into sub-tasks such as
obtaining a payment method from a user, Submitting a request
for payment using the payment method, and providing a
payment confirmation number to the user. In this example,
Submitting a request for payment may comprise the applica
tion 163 obtaining authorization for payment.

If the payment method specified in the test document 155 is
an identifier for an expired gift certificate, the expected state
of the workflow instance 133 may be an error state with no
defined payment confirmation number provided by the appli
cation 163. If the state of the workflow instance 133, includ
ing the data returned by the application 163, matches the
expected state of the test document 155, the test engine 125
may record the results of the test of this action in the workflow
log 139, and the workflow instance 133 may proceed to the
next action. Alternatively, if the states do not match, the test
engine 125 may record the event as a state mismatch. Addi
tionally, based upon the state mismatch, the test engine 125
may terminate the execution of the particular workflow
instance 133, attempt to repeat the action, restart the work
flow instance 133 from the beginning, and/or other possible
responses. In some embodiments, the response to a state
mismatch for a given expected State may be specified by the
test document 155.

It should be noted that a workflow instance 133 created for
testing purposes may or may not be executed to completion,
even if the workflow instance 133 does not deviate from
expected states of the test document 155. For various possible
reasons, the workflow engine 123 or the test engine 125 may
determine that the execution of the particular workflow
instance 133 should end. Such a “terminal action may com

US 9,170,821 B1
7

prise an action or task inherent in the workflow of the work
flow instance 133, or such action may comprise closing the
workflow instance 133 due to the fact that the workflow is
complete. If the workflow is complete, then the workflow
engine 123 closes the workflow instance 133 by performing
any needed closing tasks without applying the workflow
instance 133 to an activity 173 as can be appreciated. Alter
natively, an activity 173 may be employed that performs the
closing tasks.

In addition to the foregoing, the workflow engine 123 also
records events in the respective workflow histories 136 of the
workflow instances 133 that it handles. As non-limiting
examples, such events may comprise receiving input for a
workflow instance 133 and the source of the input, the work
flow engine 123 determining a next action for the workflow
instance 133 and the basis for determining the action, initiat
ing an activity 173 for the workflow instance 133, receiving a
workflow instance 133 from an activity 173 after completion,
an indication that a workflow instance 133 has completed or
otherwise terminated, and/or other events. In addition, events
may record various failure conditions such as the failure of a
workflow engine 123 to timely determine the next action to be
performed, the failure of an activity 173 to perform one or
more tasks with respect to the workflow for a workflow
instance 133, and/or other possible failure states.

In some embodiments, the synthesis engine 127 may cor
relate the workflow histories 136 of prior executions of vari
ous workflow instances 133a-N in order to produce and/or
extend the testing scenarios of the test documents 155a-N. To
this end, the synthesis engine 127 may identify the prior
executions of workflow instances 133 sharing the same work
flow definition 153. The workflow instances 133 may be
correlated to identify common paths of execution taken from
among the various potential paths of execution provided by
the associated workflow definition 153. Once the synthesis
engine 127 identifies the common paths among the workflow
instances 133, the actions, as well as inputs, from these paths
may be correlated and inserted into a test document 155
associated with the workflow definition 153. Furthermore,
the expected states of the workflow instances 133 that result
from each action and input combination may also be corre
lated and included within the test document 155. Thereafter,
the test document 155 produced by the synthesis engine 127
may be made available in the data store 112 for use and/or
further editing.

Referring next to FIG. 2, shown is a communication dia
gram 200 that illustrates one example of communication
occurring between the test engine 125, the workflow engine
123, and an activity 173 during execution of a workflow
instance 133 (FIG. 1) as described above according to an
embodiment of the present disclosure. To begin, the test
engine 125 requests the current state of a particular workflow
instance 133 executed by the workflow engine 123. The work
flow engine 123 requests the workflow definition 153 (FIG.
1), workflow history 136 (FIG. 1), and the information
embodying the respective workflow instance 133 from the
data store 112 (FIG.1). Upon receiving the data, the workflow
engine 123 determines the next action to be taken for the
workflow instance 133. To this end, the workflow engine 123
having embodied the workflow definition 153, then examines
the workflow history 136 and determines the next action to be
taken. Ultimately, the workflow engine 123 generates a direc
tive indicating the next action to be taken with respect to the
workflow instance 133.

In response, the workflow engine 123 may return the
present state of the workflow instance 133. The state infor
mation returned may include the workflow history 136 for the

10

15

25

30

35

40

45

50

55

60

65

8
workflow instance 133, whether an action is currently under
way, a next action for the workflow instance 133, whether any
input is required for the next action and the format of the
input, and/or other data associated with execution of the
workflow instance 133 as can be appreciated.

If input is required for the next action, the test engine 125
may provide input specified for the action within the test
document 155 (FIG. 1). In response, the workflow engine 123
may initiate an activity 173 for the next action, as well as
potentially provide the input specified by the test document
155 for the action. All needed data to perform the action may
be included in the activity request, or the activity request may
include a pointer that indicates where such information is
stored to be accessed by the respective activity 173. When
sending the activity request, the workflow engine 123 may
record an event in the workflow history 136 of the respective
workflow instance 133. The activity 173 then proceeds to
schedule, perform, and/or facilitate performance of the
respective action associated with the workflow instance 133.
As discussed previously, an action of a workflow may com
prise one or more Sub-tasks. Each of these Sub-tasks or other
lineal tasks may themselves require an activity 173. As a
result, one action of a workflow definition 153 may require
one or more activities 173 to schedule, perform, and/or facili
tate performance of the respective action associated with the
workflow instance 133. Additionally, one or more of the
actions and/or sub-tasks of a workflow instance 133 may be
performed asynchronously.
Once the activity 173 indicates the next action has been

completed, the activity 173 sends a message to the workflow
engine 123 that such processing is complete. Thereafter, the
workflow engine 123 may provide an update of the state of the
workflow instance 133 to the test engine 125. As described
previously, the test engine may compare the state of the work
flow instance 133 with the expected state provided by the test
document 155. If the State of the workflow instance 133
matches the expected state of the test document 155, the test
engine 125 may record the results of the test of this action in
the workflow log 139 (FIG.1), and the workflow instance 133
may proceed to the next action. Alternatively, if the states do
not match, the test engine 125 may record the event as a state
mismatch and potentially take further responsive action.

Turning now to FIG. 3, shown is a flowchart that provides
one example of the operation of the test engine 125 according
to various embodiments. It is understood that the flowchart of
FIG. 3 merely provides an example of the many different
types of functional arrangements that may be employed to
implement the operation of the test engine 125 as described
herein. As an alternative, the flowchart of FIG. 3 may be
viewed as depicting an example of steps of a method imple
mented in the computing environment 103 (FIG.1) according
to one or more embodiments.

This portion of the test engine 125 may be executed based
at least upon a workflow definition 153 (FIG. 1) being
selected for testing by the test engine 125. To begin, in block
303, the test engine 125 obtains a test document 155 (FIG. 1)
associated with the workflow definition 153. Then, in block
306, the test engine 125 may initiate a workflow instance 133
(FIG. 1), where the workflow instance 133 is an instance of
the given workflow definition 153. In some embodiments, the
test engine 125 may be provided with an identifier for a
pre-existing workflow instance 133, thereby bypassing the
need to create a new instance.

Next, in block 309, the workflow engine 123 (FIG. 1)
retrieves any workflow history 136 (FIG. 1) and workflow
definition 153 from the data store 112 (FIG. 1) for such
workflow instance 133. Once the workflow history 136 and

US 9,170,821 B1
9

other information embodying the workflow instance 133 are
received by the respective workflow engine 123, then the
workflow engine 123 processes the workflow definition 153
and examines the workflow history 136 in order to determine
a next action to be taken for the respective workflow instance
133.

Then, in block 312, the test engine 125 determines whether
input is required for the next action based upon the state
information obtained for the workflow instance 133. If not
input is required, execution of the test engine returns to block
309. Alternatively, if input is required, execution of the test
engine 125 proceeds to block 315. At block 315, the test
engine 125 may communicate the input to the workflow
engine 123. If the test document 155 does not specify an input
for a given action, the test engine 125 may obtain the input
from a user throughauser-interface and/or from another input
Source as can be appreciated.

Continuing, at block 318, the test engine 125 may obtain
the state of the workflow instance 133 resulting from perfor
mance of the action. Moving on, at block 321, the test engine
125 may compare the data associated with the state of the
workflow instance 133 after completing the activity 173 (FIG.
1) with the expected state of the workflow instance specified
by the test document 155. Such a comparison may permit
testing of not only the operation of the workflow instance 133,
but potentially the operation of one or more applications 163
(FIG. 1) carrying out the action.

Next, at block 324, the test engine 125 determines whether
the state of the workflow instance 133, including the data
returned by the application 163 (FIG. 1), matches the
expected state of the test document 155. If the states match,
execution of the test engine 125 returns to block 312 to
determine if the present state of the workflow instance
requires input. Alternatively, if the states do not match, in
block 327, the test engine 125 may record the event in the
workflow log 139 (FIG. 1) as a state mismatch and initiate a
responsive action to the mismatch as described previously.
Thereafter, this portion of the execution of the test engine 125
may end as shown.

With reference to FIG.4, shown is a flowchart that provides
one example of the operation of the synthesis engine 127
according to various embodiments. It is understood that the
flowchart of FIG.3 merely provides an example of the many
different types of functional arrangements that may be
employed to implement the operation of the synthesis engine
127 as described herein. As an alternative, the flowchart of
FIG. 4 may be viewed as depicting an example of steps of a
method implemented in the computing environment 103
(FIG. 1) according to one or more embodiments.

This portion of the synthesis engine 127 may be executed
based at least upon a request from an operator to examine
workflow histories 136 (FIG. 1) in order to produce one or
more test documents 155 (FIG. 1). To begin, in block 403, the
synthesis engine 127 may obtain workflow histories 136 asso
ciated with one or more of prior executions of various work
flow instances 133a-N (FIG. 1). Next, in block 406, the syn
thesis engine 127 may identify the workflow definitions
153a-N (FIG. 1) represented by prior executions of workflow
instances 133a-N.

Then, in block 409, the synthesis engine 127 may correlate
the various workflow instances 133 associated with a given
workflow definition 153 in order to identify common paths of
execution taken from among the various potential paths of the
workflow definition 153. Continuing, in block 412, the syn
thesis engine 127 may generate one or more test scenarios
based upon the various actions, inputs, and resulting states
taken along these common paths. Next, in block 415, the

10

15

25

30

35

40

45

50

55

60

65

10
synthesis engine 127 may insert the test scenarios in the test
document 155 associated with the workflow definition 153.
Thereafter, in block 418, the synthesis engine 127 may deter
mine if further workflow definitions 153a-N were repre
sented in the workflow histories 136 for which the workflow
instances 133a-N have not been examined. If more workflow
definitions 153a-N remain, execution of the synthesis engine
127 returns to box 409. Alternatively, if no further workflow
definitions 153a-N exist for which the associated workflow
instances 133a-Nhave not been examined, this portion of the
synthesis engine 127 ends as shown.

Turning now to FIG. 5, shown is a schematic block diagram
of the computing environment 103 according to an embodi
ment of the present disclosure. The computing environment
103 may comprise, for example, one or more computing
devices 500. A computing device 500 includes at least one
processor circuit, for example, having a processor 503 and a
memory 506, both of which are coupled to a local interface
509. The local interface 509 may comprise, for example, a
data bus with an accompanying address/control bus or other
bus structure as can be appreciated.

Stored in the memory 506 are both data and several com
ponents that are executable by the processor 503. In particu
lar, stored in the memory 506 and executable by the processor
503 are the workflow engine 123, the test engine 125, the
synthesis engine 127, and potentially other applications. Also
stored in the memory 506 may be a data store 112 and other
data. In addition, an operating system may be stored in the
memory 506 and executable by the processor 503.

It is understood that there may be other applications that are
stored in the memory 506 and are executable by the proces
sors 503 as can be appreciated. Where any component dis
cussed herein is implemented in the form of software, any one
of a number of programming languages may be employed
Such as, for example, C, C++, C#, Objective C, Java, Javas
cript, Perl, PHP, Visual Basic, Python, Ruby, Delphi, Flash, or
other programming languages.
A number of software components are stored in the

memory 506 and are executable by the processor 503. In this
respect, the term "executable' means a program file that is in
a form that can ultimately be run by the processor 503.
Examples of executable programs may be, for example, a
compiled program that can be translated into machine code in
a format that can be loaded into a random access portion of the
memory 506 and run by the processor 503, source code that
may be expressed in proper format Such as object code that is
capable of being loaded into a random access portion of the
memory 506 and executed by the processor 503, or source
code that may be interpreted by another executable program
to generate instructions in a random access portion of the
memory 506 to be executed by the processor 503, etc. An
executable program may be stored in any portion or compo
nent of the memory 506 including, for example, random
access memory (RAM), read-only memory (ROM), hard
drive, solid-state drive, USB flash drive, memory card, optical
disc Such as compact disc (CD) or digital versatile disc
(DVD), floppy disk, magnetic tape, or other memory compo
nentS.

The memory 506 is defined herein as including both vola
tile and nonvolatile memory and data storage components.
Volatile components are those that do not retain data values
upon loss of power. NonVolatile components are those that
retain data upon a loss of power. Thus, the memory 506 may
comprise, for example, random access memory (RAM), read
only memory (ROM), hard disk drives, solid-state drives,
USB flash drives, memory cards accessed via a memory card
reader, floppy disks accessed via an associated floppy disk

US 9,170,821 B1
11

drive, optical discs accessed via an optical disc drive, mag
netic tapes accessed via an appropriate tape drive, and/or
other memory components, or a combination of any two or
more of these memory components. In addition, the RAM
may comprise, for example, static random access memory
(SRAM), dynamic random access memory (DRAM), or mag
netic random access memory (MRAM) and other such
devices. The ROM may comprise, for example, a program
mable read-only memory (PROM), an erasable program
mable read-only memory (EPROM), an electrically erasable
programmable read-only memory (EEPROM), or other like
memory device.

Also, the processor 503 may represent multiple processors
503 and the memory 506 may represent multiple memories
506 that operate in parallel processing circuits, respectively.
In such a case, the local interface 509 may be an appropriate
network 109 (FIG. 1) that facilitates communication between
any two of the multiple processors 503, between any proces
sor 503 and any of the memories 506, or between any two of
the memories 506, etc. The local interface 509 may comprise
additional systems designed to coordinate this communica
tion, including, for example, performing load balancing. The
processor 503 may be of electrical or of some other available
construction.

Although the workflow engine 123, the test engine 125, the
synthesis engine 127, and other various systems described
herein may be embodied in software or code executed by
general purpose hardware as discussed above, as an alterna
tive the same may also be embodied in dedicated hardware or
a combination of Software/general purpose hardware and
dedicated hardware. If embodied in dedicated hardware, each
can be implemented as a circuit or state machine that employs
any one of or a combination of a number of technologies.
These technologies may include, but are not limited to, dis
crete logic circuits having logic gates for implementing vari
ous logic functions upon an application of one or more data
signals, application specific integrated circuits having appro
priate logic gates, or other components, etc. Such technolo
gies are generally well known by those skilled in the art and,
consequently, are not described in detail herein.
The flowcharts of FIGS.3 and 4 show the functionality and

operation of an implementation of portions of the test engine
125 and synthesis engine 127, respectively. If embodied in
Software, each block may represent a module, segment, or
portion of code that comprises program instructions to imple
ment the specified logical function(s). The program instruc
tions may be embodied in the form of source code that com
prises human-readable statements written in a programming
language or machine code that comprises numerical instruc
tions recognizable by a suitable execution system Such as a
processor 503 in a computer system or other system. The
machine code may be converted from the source code, etc. If
embodied in hardware, each block may represent a circuit or
a number of interconnected circuits to implement the speci
fied logical function(s).

Although the flowcharts of FIGS. 3 and 4 show a specific
order of execution, it is understood that the order of execution
may differ from that which is depicted. For example, the order
of execution of two or more blocks may be scrambled relative
to the order shown. Also, two or more blocks shown in suc
cession in FIGS. 3 and 4 may be executed concurrently or
with partial concurrence. Further, in some embodiments, one
or more of the blocks shown in FIGS. 3 and 4 may be skipped
or omitted. In addition, any number of counters, state vari
ables, warning semaphores, or messages might be added to
the logical flow described herein, for purposes of enhanced
utility, accounting, performance measurement, or providing

10

15

25

30

35

40

45

50

55

60

65

12
troubleshooting aids, etc. It is understood that all Such varia
tions are within the scope of the present disclosure.

Also, any logic or application described herein, including
the workflow engine 123, the test engine 125, and the synthe
sis engine 127, that comprises Software or code can be
embodied in any non-transitory computer-readable medium
for use by or in connection with an instruction execution
system such as, for example, a processor 503 in a computer
system or other system. In this sense, the logic may comprise,
for example, statements including instructions and declara
tions that can be fetched from the computer-readable medium
and executed by the instruction execution system. In the
context of the present disclosure, a “computer-readable
medium' can be any medium that can contain, store, or main
tain the logic or application described herein for use by or in
connection with the instruction execution system. The com
puter-readable medium can comprise any one of many physi
cal media Such as, for example, magnetic, optical, or semi
conductor media. More specific examples of a Suitable
computer-readable medium would include, but are not lim
ited to, magnetic tapes, magnetic floppy diskettes, magnetic
hard drives, memory cards, solid-state drives, USB flash
drives, or optical discs. Also, the computer-readable medium
may be a random access memory (RAM) including, for
example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic ran
dom access memory (MRAM). In addition, the computer
readable medium may be a read-only memory (ROM), a
programmable read-only memory (PROM), an erasable pro
grammable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other type of memory device.

It should be emphasized that the above-described embodi
ments of the present disclosure are merely possible examples
of implementations set forth for a clear understanding of the
principles of the disclosure. Many variations and modifica
tions may be made to the above-described embodiment(s)
without departing Substantially from the spirit and principles
of the disclosure. All Such modifications and variations are
intended to be included herein within the scope of this dis
closure and protected by the following claims.

Therefore, the following is claimed:
1. A non-transitory computer-readable medium embody

ing a program executable in a computing device, the program
comprising:

code that acquires a test document associated with a work
flow definition in response to receiving the workflow
definition comprising a plurality of possible paths of
execution, individual ones of the plurality of possible
paths of execution comprising a sequence of a plurality
of actions, the test document comprising a program
matic input source configured to provide an input for at
least one of the plurality of actions of the workflow
definition and an expected state for the workflow defi
nition based at least on the input;

code that places a workflow instance in a queue accessible
to a workflow engine in the computing device, the work
flow instance being an instance of the workflow defini
tion;

code that provides the input from the programmatic input
source for the at least one of the plurality of actions of the
workflow instance to the workflow engine managing the
workflow instance, the at least one of the plurality of
actions determined based at least in part upon a present
state of the workflow instance and being performed by a
remote application, the remote application interfacing
with the workflow engine and returning a result, the

US 9,170,821 B1
13

input being determined upon execution of the at least
one of the plurality of actions of the workflow instance:

code that generates a comparison of a next state of the
workflow instance to the expected state of the test docu
ment in response to receiving the next state of the work
flow instance, the next state being based at least in part
upon the present state, the at least one of the plurality of
actions, the input, and the result, wherein the compari
Son comprises the result of the remote application; and

code that restarts the workflow instance at a beginning of
the workflow instance based at least in part on a differ
ence in the comparison.

2. The non-transitory computer-readable medium of claim
1, further comprising code that provides an initial State of the
workflow instance, the test document further comprising the
initial state.

3. The non-transitory computer-readable medium of claim
1, further comprising code that generates a plurality of com
mon actions for use with future workflow instances, wherein
the plurality of common actions are inserted within the test
document and the plurality of common actions are based at
least in part upon a transaction log from a plurality of prior
executions of a plurality of prior workflow instances, the
plurality of prior workflow instances being associated with
the workflow definition.

4. A non-transitory computer-readable medium embody
ing a program executable in a computing device, the program
comprising:

code that acquires a test document associated with a work
flow definition comprising a plurality of possible paths
of execution, individual ones of the plurality of possible
paths of execution comprising a sequence of a plurality
of actions, wherein the test document comprises a pro
grammatic input source configured to provide an input
for at least one of the plurality of actions of the workflow
definition and an expected state for the workflow defi
nition based at least in part on the input;

code that, in response to receiving the workflow definition,
places a workflow instance in a queue accessible to a
workflow engine in the computing device, the workflow
instance being an instance of the workflow definition;

code that provides the input from the programmatic input
source for the at least one of the plurality of actions of the
workflow instance to the workflow engine managing the
workflow instance, the at least one of the plurality of
actions determined based at least in part upon a present
state of the workflow instance and being performed by a
remote application, the remote application interfacing
with the workflow engine and returning a result, the
input being determined upon execution of the at least
one of the plurality of actions of the workflow instance:

code that, in response to receiving a next state of the work
flow instance, generates a comparison of the next state of
the workflow instance to the expected state of the test
document, wherein the next state is based at least in part
upon the present state, the at least one of the plurality of
actions, the input, and the result, and wherein the com
parison comprises the result of the remote application;
and

code that restarts the workflow instance at a beginning of
the workflow instance based at least in part on a differ
ence in the comparison.

5. The non-transitory computer-readable medium of claim
4, wherein the at least one of the plurality of actions comprises
a plurality of Sub-tasks and the input comprises at least one
sub-input for the plurality of sub-tasks.

5

10

15

25

30

35

40

45

50

55

60

65

14
6. The non-transitory computer-readable medium of claim

5, wherein the at least one of the plurality of actions is not
complete until the plurality of Sub-tasks are completed.

7. A system, comprising:
at least one computing device; and
a test engine executable in the at least one computing

device, the test engine comprising:
logic that delivers an input for an action of a workflow

instance, a test document executed by the test engine
determining the input from a programmatic input
Source based at least in part upon the action, and a
workflow engine executing the workflow instance
determining the action based at least in part upon a
present state of the workflow instance, the input being
determined upon execution of the action of the work
flow instance;

logic that, in response to receiving a next state of the
workflow instance, compares the next state of the
workflow instance to the test document, wherein the
next state is determined by the workflow engine based
at least in part upon the present state, the action, and
the input, and wherein the test document comprises an
expected state of the workflow instance; and

logic that restarts the workflow instance at a beginning
of the workflow instance based at least in part on a
result of a comparison of the next state of the work
flow instance to the test document.

8. The system of claim 7, wherein the workflow instance is
an instance of a workflow definition comprising a plurality of
possible paths of execution, and the test document is associ
ated with the workflow definition.

9. The system of claim 8, further comprising logic that
generates an additional test scenario that is inserted into the
test document based at least in part upon a log of a plurality of
prior instances of the workflow definition, the plurality of
prior instances representing a Subset of the plurality of pos
sible paths of execution of the workflow definition.

10. The system of claim 9, wherein the log indicates that at
least one of the plurality of prior instances of the workflow
definition produced an error.

11. The system of claim 8, wherein the test engine further
comprises logic that generates an event based at least in part
upon a difference between the next state of the workflow
instance and the expected State of the test document.

12. The system of claim 11, further comprising logic that
instructs the workflow engine to repeat the action using the
present state and the input, wherein the workflow engine is
scheduled to perform the action associated with the present
state for the next state of the workflow instance.

13. The system of claim 7, wherein the action is performed
by a remote application, the remote application interfacing
with the workflow instance and returning a result.

14. The system of claim 7, wherein the action comprises a
plurality of Sub-tasks and the input comprises at least one
sub-input for the plurality of sub-tasks.

15. A method, comprising:
receiving, via at least one of one or more computing

devices, a test document associated with a workflow
definition, the test document comprising a program
matic input source configured to provide an input for an
action of the workflow definition and an expected state
for the workflow definition based at least in part on the
input;

delivering, via at least one of the one or more computing
devices, the input from the programmatic input source
for the action of a workflow instance, the workflow
instance being a first instance of the workflow definition

US 9,170,821 B1
15

executed by a workflow engine, and the action deter
mined based at least in part upon a present state of the
workflow instance, the input being determined upon
execution of the action of the workflow instance;

receiving, via at least one of the one or more computing
devices, a next state of the workflow instance, the next
state being determined by the workflow engine based at
least in part upon the present state, the action, and the
input;

comparing, via at least one of the one or more computing
devices, the next state of the workflow instance to the
expected State specified by the test document; and

restarting, via at least one of the one or more computing
devices, the workflow instance at a beginning of the
workflow instance in response to detecting a discrep
ancy between the next state of the workflow instance and
the expected state specified by the test document in
response to comparing the next state of the workflow
instance to the expected State specified by the test docu
ment.

16. The method of claim 15, further comprising generating,
via at least one of the one or more computing devices, an
alarm based at least in part upon a difference between the next
state of the workflow instance and the expected state of the
test document.

17. The method of claim 15, wherein a portion of the test
document is generated based at least in part upon a log from
a prior execution of a prior workflow instance, the prior
workflow instance being a second instance of the workflow
definition.

10

15

25

30

16
18. The method of claim 15, wherein the action comprises

at least one Sub-task and the input comprises a Sub-input for
the at least one Sub-task.

19. The method of claim 18, wherein the action is not
complete until the at least one sub-task is completed.

20. The method of claim 15, wherein the test document is
a JavaScript object notation (JSON) document.

21. The method of claim 15, further comprising initiating,
via at least one of the one or more computing devices, the
workflow instance based at least in part upon the workflow
definition specified by the test document.

22. The method of claim 15, wherein the action is per
formed by a remote application, the remote application inter
facing with the workflow instance and returning a result.

23. The method of claim 22, wherein comparing, via at
least one of the one or more computing devices, the next state
of the workflow instance to the expected state of the test
document further comprises performing a comparison of the
result from the remote application to the expected state of the
test document, the expected State of the test document com
prising an expected result from the remote application.

24. The non-transitory computer-readable medium of
claim 3, further comprising:

code that generates an additional test scenario based at
least in part upon the plurality of common actions, a
plurality of corresponding inputs associated with the
plurality of common actions, and a corresponding plu
rality of results associated with the plurality of common
actions; and

code that inserts the additional test scenario within the test
document.

