
(12) United States Patent
Johnston

USOO9262311B1

US 9.262,311 B1
Feb. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) NETWORK PAGE TEST SYSTEMAND
METHODS

(71) Applicant: Amazon Technologies, Inc., Seattle, WA
(US)

(72) Inventor: Simon K. Johnston, Snohomish, WA
(US)

(73) Assignee: Amazon Technologies, Inc., Seattle, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/095,792

(22) Filed: Dec. 3, 2013

(51) Int. Cl.
G06F 9/44 (2006.01)
G06F II/36 (2006.01)

(52) U.S. Cl.
CPC G06F II/3688 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,601,434 B2 * 12/2013 De Keukelaere et al. ... 717/106
8,863,085 B1 * 10/2014 Stahlberg 717/124
9,003,423 B1 * 4/2015 Rodriguez Valadez

et al. T19,310
2004/0010543 A1 1/2004 Grobman GO6F 17,30902

TO9,203
2008/0295070 A1* 11/2008 Bozza et al. 717/106

100

2010.0064281 A1 3/2010 Kimball et al. 717/124
2012/0174075 A1* 7, 2012 Carteri et al. 717/127
2013,0004087 A1 1/2013 Kumar et al. 382.218
2013,0346302 A1* 12/2013 Purves et al. TOS/40
2014/0245264 A1* 8/2014 Bartley et al. . 717,124

OTHER PUBLICATIONS

Conde, Carlos, and Attila Narin. “Development and Test on Amazon
Web Services.” Amazon Web Service.N.p., Nov. 2012. Web. Nov. 29,
2014. <http://media.amazonwebservices.com/AWS Develop
ment Test Environments.pdf>.*
“How to: Specify a Test Run Configuration.” Microsoft Developer
Network.N.p., Dec. 18, 2010. Web. Nov. 29, 2014. <http://msdn.
microsoft.com/en-us/librarylms 182480>.*
Wilton-Jones, Mark. "DOM nodes and tree.” How to Create.N.p.
Mar. 19, 2011. Web. Nov. 29, 2014.<http://www.howtocreate.co.uk/
tutorials avaScript? dombasics.
Panda, Debu. “Out-of-Container EJB 3.0 Testing with Oracle Entity
Test Harness.” Oracle Technology Network.N.p., Apr. 2006. Web.
Nov. 29, 2014. <http://www.oracle.com/technetwork/articles/debu
testability-of-eb-095455.html>.*

* cited by examiner

Primary Examiner — Wei Zhen
Assistant Examiner — Binh Lulu
(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson &
Bear, LLP

(57) ABSTRACT

Systems and methods for testing a network page without
encapsulating the network page with a test environment are
presented. A script such as a test injector Script may be added
to a network page in development. The testinjector Script may
identify one or more tests to run on the network page based, at
least in part, on metadata included in the network page. The
domain object model (DOM) of the network page may be
modified to include tests to be performed on the network
page.

21 Claims, 5 Drawing Sheets

NETWORK
PAGE TEST
SYSTEM NETWORK

114 SITES
NETWORK 8

APPLICATION

NETWORK
104

112

USER COMPUTING
DEWICE O2

USER
COMPUTING
DEWICES -

102

SERVERS

NETWORK
pAGE TEST
SYSTEM

114
NETWORK

APPLICATION
112

COMPUTING
DEWICE 122

REPOSITORY
130

TEST LOGS
132

TEST
RESOURCES

NETWORK
PAGE TEST
NJECTOR

140

:::::::::::::38YSE::::::

U.S. Patent

200 N

Feb. 16, 2016 Sheet 2 of 5

NETWORK PAGE TEST PROCESS

START

IDENTIFY ONE ORMORE
TESTS TO RUN ON A
NETWORK PAGE

202

MODIFY THE NETWORK
PAGE TO INCLUDE ONE OR
MORE TEST RESOURCES
CORRESPONDING TO THE
IDENTIFIED ONE ORMORE

TESTS
204

EXECUTE THE ONE ORMORE
TESTS UTILIZING THE ONE
ORMORE TEST RESOURCES

206

US 9.262,311 B1

U.S. Patent

300 N

Feb. 16, 2016 Sheet 3 of 5

TEST IDENTIFICATION PROCESS

DETECT OCCURRENCE OF
TRIGGER TO PERFORMA
TEST PROCESS ON A
NETWORK PAGE

302

SCAN NETWORK PAGE TO
IDENTIFY AFIRST SET OF
TEST RESOURCES FOR
TESTING THE NETWORK

PAGE
304

LOAD FIRST SET OF TEST
RESOURCES

306

IDENTIFY ASECOND SET OF
TEST RESOURCES FROM
QUERY PARAMETERS

308

LOAD SECOND SET OF
TEST RESOURCES

310

FIG 3

US 9.262,311 B1

US 9.262,311 B1 U.S. Patent

US 9,262,311 B1
1.

NETWORK PAGE TEST SYSTEMAND
METHODS

BACKGROUND

Software applications are typically tested by developers or
Software testers to remove bugs or programming errors before
being released to end-users. Often, a Software application will
go through several iterations before being released to end
users to remove detected programming errors, add features,
or respond to beta-user feedback. Each iteration of the soft
ware application may result in additional rounds of testing.
Further, Some applications may have several release versions
or updates over time, each of which may also have several
rounds of testing.
A network page may also be tested by a developer or tester.

In some cases, network pages may be simple static pages that
require little to no testing. However, it is often the case that a
network page can be complex, and sometimes, may be as
complex as an extensive Software application. Further, in
Some cases, the network page may be a software application
or part of a software application. As such, network pages may
go through extensive testing, and sometimes, may be tested as
extensively as a complex Software application utilizing its
own test environment.

BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers are re-used to
indicate correspondence between referenced elements. The
drawings are provided to illustrate embodiments of the inven
tive subject matter described herein and not to limit the scope
thereof.

FIG. 1 illustrates an embodiment of a networked comput
ing environment for testing network pages hosted by a net
work site provider.

FIG. 2 presents a flowchart of an embodiment of a network
page test process.

FIG. 3 presents a flowchart of an embodiment of a test
identification process.

FIG. 4A illustrates an example document object model
(DOM).

FIG. 4B illustrates an example document object model
(DOM) with a loaded test resource.

DETAILED DESCRIPTION

Introduction
It is typically desirable to test an application before releas

ing it for public consumption. This is true for network pages
(e.g., webpages) as well. As network pages become more
complex, Such as through the inclusion of various Scripts
(e.g., JavaScript(R), ActionScript(R), etc.), the complexity of
testing the network pages increases. Often, the testing
requires human interaction to set up the test environment, to
provide test data, and to confirm that the test was successfully
executed. This human interaction can make testing a network
page both expensive and time-consuming.

Further, when a network page is modified, often the test
environment will break. In such cases, it may be necessary to
update or modify the test environment, Updating the test
environment each time there is a change to a network page can
itself be an expensive and time-consuming process. Further,
many test environments work by encapsulating the network
page to be tested. In some cases, these test environments can
result in false positives and/or false negatives because they
cannot determine that the structure of the network page may

10

15

25

30

35

40

45

50

55

60

65

2
have been modified. In addition, in Some cases, the test envi
ronment may not be representative of the end-user's environ
ment because it can be difficult to anticipate the configuration
of the computing system from which each user may access the
network page. Further, using the most common computing
systems for the test environment may not be sufficient
because, for example, each user may alter the configuration of
his or her computing system upon purchase by, for example,
installing different network access applications (e.g., brows
ers), peripherals, operating systems, and/or other types of
applications.

Certain embodiments of this disclosure present systems
and methods for testing a network page without encapsulat
ing the network page within a test environment. In certain
embodiments, a Script such as a test injector Script or a test
execution service may be added to a network page in devel
opment. In some cases, the test injector Script may be
extracted or removed from the network page after completion
of testing. In other cases, the testinjector Script may remain in
the network page when it is published for user consumption or
hosted by a computing system for access by end-users (e.g.,
customers or other public users). In certain embodiments, by
retaining the test injector Script in the network page after the
network page is published, tests may be performed on a
production version of the network page. Such as in response to
an error occurring when an end-user or consumer accesses the
network page.

In certain embodiments, the test injector Script can identify
tests to perform on a network page based on metadata
included in the network page. These tests and/or data for
performing one or more tests may be loaded into the network
page. For example, upon identifying a test to perform, the test
injector Script may access a source location, such as a reposi
tory, identified by the metadata in the network page to obtain
test resources, such as test Scripts. The test injector Script may
modify the network page. Such as by modifying the domain
object model (DOM) of the network page to include the test
resource or a link to the test resource.
As previously stated, the test injector Script can be hosted

within the network page and may automatically execute tests
within the context of the network page. In certain embodi
ments, including the test injector Script in the network page
allows for a more seamless test Support for network pages as
each network page can be associated with one or more test
Suites and the testinjector Script can either run the tests ad-hoc
from a user application (e.g., a browser) or as part of an
automated regression or integration test Suite. Further,
embodiments described herein allow for the identification of
tests within production network pages by the addition of
metadata to pages which can be used by the testinjector Script
to load and execute tests within the network page without
modification of the source network page code. Thus, in some
cases, a separate test version of a network page can be omitted
and the same network page code may be used both for testing
the network page and for use in a production or non-test
environment. This feature is in contrast to many test Software
applications for network pages that typically provide an
execution environment or test container that wraps around a
network page or encapsulates the network page, or which are
only capable of testing components of a network page in
isolation. The ability to load tests from the test injector script
added to a network page can allow for the execution of tests as
required. For example, on the detection of an anomaly in a
specific environment, the tests can be invoked to determine
specific causes of errors.

Certain embodiments described herein enable testing a
network page in-situ without having to produce a test version

US 9,262,311 B1
3

of the network page, or test components of the page under test
conditions. Further, embodiments disclosed herein enable
tests to be performed immediately (or rapidly) or in a deferred
mode by, for example, enabling a user to initiate tests and/or
enabling tests to be initiated in response to captured errors by,
for example, a network application (e.g., a browser). Further,
the tests may be run in a traditional browser with a graphical
user interface, in a headless browser, or in any other type of
network application.

In some cases, the insertion of test resources by a test
injector script into a network page by modifying the DOM of
the network page to include the test resources for testing the
network page enables at least some of the test resources to
access an Application Programming Interface (API) for ele
ments included in the network page. In certain embodiments,
this ability to access the API of page elements enables more
accurate testing of a network page compared to test systems
or test environments that encapsulate a network page and
attempt to test the network page by mimicking a human
interacting with the network page. In other words, while a
number of test environments attempt to fake or mimic button
presses and text entry by a user, embodiments of the present
disclosure can run tests and test code within the context of the
network application itself by, for example, causing portions
of the network page to execute. In some cases, causing por
tions of the network page to execute may include accessing
the API of elements of the network page.

In some embodiments, a network page server, network site,
or other interactive computing system configured to provide
access to a network page may include versions of the network
page with test metadata and/or a test injector Script included
in the network page. The network page server may then
determine upon receiving a request from a user whether a test
version of the page should be provided to the user's comput
ing system or whether a production version of the page with
out test metadata or the test injector script should be provided.
If a production version of the page is to be provided, the
network page server may be configured to strip out or remove
the test metadata and/or the test injector Script and the net
work page is served or provided to the user's computing
system. If instead a developer version of the page is to be
provided for testing purposes, the test metadata and/or the test
injector Script may be maintained in the network page when it
is provided to the requesting user's computing system. The
network page server may determine whether to provide the
test version or the production version of the network page
based on any type of determination factor. For example, the
determination factor may be based on a command received
from a user, a lack of a command received, a default configu
ration, a location of the user, an identity of the user's com
puting device, an Internet Protocol (IP) address (e.g., external
to a computing environment versus internal to the computing
environment), and the like.
Example Networked Computing Environment

FIG. 1 illustrates an embodiment of a networked comput
ing environment 100 for testing network pages hosted by a
network site provider. The network pages can include any
type of network page that may provide a user, a computing
system, or another network page with access to content. For
example, in some cases, the network page may be a webpage
or a website. The network site provider may be any organi
Zation or entity that owns, posts, or is associated with one or
more network sites 106 or content providers that host one or
more network pages.
The networked computing environment 100 may include

an interactive computing system 110. The interactive com
puting system 110 may include any system for facilitating

5

10

15

25

30

35

40

45

50

55

60

65

4
tests of a network site 106 or a network page hosted by a
network site 106. In some cases the interactive computing
system 110 may be an independent system or associated with
an independent organization. In other cases, the interactive
computing system 110 may itself be a network site 106, or
may be included by, or associated with, one or more of the
network sites 106.
The interactive computing system 110 can include a num

ber of systems for hosting a network page and/or for testing a
network page. For example, the interactive computing system
110 of FIG. 1 includes a number of servers 120, a computing
device 122, a test repository 130 and a network page test
injector 140. Each of these systems may be used to help host
a network page and/or to help test a network page. For
example, one or more of the servers 120 may host a network
page and/or provide test resources, such as test code, for
testing a network site 106; or a network page hosted by a
network site 106 or the interactive computing system 110.
Further, the servers 120 may include any type of computing
system that enables access to one or more other systems of the
interactive computing system 110. For example, the servers
120 may include network servers, application servers, web
servers, network page servers, and the like. Although the term
servers is used to describe the servers 120, the systems of the
networked computing environment 100 are not limited to a
client/server architecture, and any other type of architecture
for the computing devices of the networked computing envi
ronment 100 is possible in the context of the present disclo
SUC.

In some cases, a network page test injector 140 can include
any system capable of injecting a test injector Script into a
network page. Injecting the test injector script into the net
work page may include adding code, such as a script, to the
code of the network page. In other cases, injecting the test
injector Script to the network page may include adding a link
to the test injector Script to the network page. The test injector
Script can include any type of software module that can man
age tests of a network page including the test injector Script.
In some cases, the testinjector Script may perform or facilitate
tests of other network pages besides the network page that
includes the test injector Script. For example, in some cases a
test injector Script can test a network page that is linked to the
network page including the test injector Script. Further, the
test injector Script can identify the tests associated with a
network page and access one or more testing resources for
performing the tests on the network page that includes the test
injector Script. In some cases, the test injector Script can serve
as a bootstrap mechanism for initiating testing of a network
page by loading one or more test resources in response to a
captured error by the test injector Script, the network page test
system 114, or by the network application 112.
The computing device 122 can include any type of com

puting device that may be used to test a network page. In an
illustrative embodiment, the computing device 122 can cor
respond to a wide variety of computing devices including
personal computing devices, laptop computing devices,
hand-held computing devices, terminal computing devices,
mobile devices (e.g., mobile phones, Smart phones, tablet
computing devices, etc.), wireless devices, various electronic
devices and appliances, video game systems, kiosks, and the
like. In an illustrative embodiment, the computing device 122
may include hardware and/or Software components for estab
lishing communication over a communication network 104.
For example, the computing device 122 may be equipped
with networking equipment and browser Software applica
tions that facilitate communications via a network (e.g., the
Internet) or an intranet. The computing devices 122 may have

US 9,262,311 B1
5

varied local computing resources such as central processing
units and architectures, memory, mass storage, graphics pro
cessing units, communication network availability and band
width, etc.

The computing device 122 may include a network appli
cation 112 for accessing and/or executing one or more net
work pages. This network application 112 may include any
type of application that can access the one or more network
pages. For example, the network application 112 may include
a browser or a mobile application (sometimes termed "app').
Further, in some cases, the computing device 122 may include
a network page test system 114 for injecting a test injector
Script into a network page that has been accessed by the
network application 112. As illustrated in FIG. 1, the network
page test system 114 may be included as part of the network
application 112. In other cases, the network page test system
114 may be a separate system from the network application
112. In some embodiments, the network page test system 114
may be a hardware device that is in communication with the
computing device 122. In other cases, the network page test
system 114 may be a separate Software application, or a
software module or plug-in for the network application 112.
The test repository 130 may include a number of data stores

or data structures (e.g., tables, databases, etc.) for storing test
information and test resources. For example, the test reposi
tory may include a test log data store 132 and a test resources
data store 134. The test log data store 132 may include any
type of data related to tests performed on a network page. For
example, the test log data store 132 may include a record of
the tests performed on a network page and the results of the
performed tests. The test resources data store 134 may
include any type of data or information for facilitating testing
of a network page. For example, the test resources data store
134 may include data that may be added to elements (e.g., text
fields, forms, list selections, etc.) of a network page under
test. As a second example, the test resources data store 134
may include one or more test processes, test algorithms, or
test macros for testing a network page under test. In some
cases, the test resources data store 134 may also include the
identity of tests to perform on a network page and/or metadata
to add to the network page identifying the tests to perform to
a test injector Script.

Tests of a network page may be initiated by a developer
user (or non end-user). Such as a test engineer, a Software
developer, oran administrator, who is developing the network
page or is assigned to test the network page. Such a user may
use the computing device 122 to initiate testing of a network
page hosted by the interactive computing system 110 and/or
one of the network sites 106. In such cases, the user may
manually initiate a test of the network page by, for example,
accessing a button or other interface element included in the
network page under test. In other cases, the user may access a
developer console, Script console, or other network applica
tion 112 interface for causing a test process to be initiated on
a network page under test. Using Such a console, the user or
developer may execute a bootstrap script that initiates testing.
For example, the user may type “object. test” to initiate a
JavaScript bootstrap method that runs or initiates a test pro
cess. This test process may be performed or initiated by the
test injector Script included in the network page by the net
work page test system 114 or the network page test injector
140. In some cases, the test process may be performed by a
processor or other hardware of the computing device 122.

Users, or end-users, may access a network page under test
or otherwise using the user computing devices 102. The user
computing devices 102 can include any type of computing
device. Further, the user computing devices 102 can include

10

15

25

30

35

40

45

50

55

60

65

6
some or all of the embodiments described with respect to the
computing device 122. The users may access the network
page at the interactive computing system 110 and/or at the
network sites 106 over a network 104. The network 104 can
include any type of network. For example, the network 104
may be a local area network (LAN), wide area network
(WAN), Wi-Fi network, cellular network, satellite network,
ad hoc network, or combinations of the same. In some cases,
the network 104 may include the Internet.
As illustrated in FIG. 1, the user computing device 102,

much like the computing device 122, may include a network
application 112 for accessing a network page. Further, in
Some cases the user computing device 102 may include a
network page test system 114 for injecting a test injector
Script into a network page. In some cases, the network page
test system 114 may include the testinjector Script and/or may
be the test injector script.

Although it is typically desirable that testing occur at the
interactive computing system 110 (e.g., by the computing
device 122), in Some cases, it is advantageous for testing to be
performed by the user computing device 102. For example,
when an error accessing a network page occurs in response to
an end-user's access of the network page, it is often desirable
for at least some tests to be performed in the context of the
user's system (e.g., the user computing device 102) because,
for example, it may be difficult to replicate the error or the
context in which the error occurred at a later time or on a
different computing system.
Example Network Page Test Process

FIG. 2 presents a flowchart of an embodiment of a network
page test process 200. The process 200 can be implemented
by any system that can test a network page. For example, the
process 200, in whole or in part, can be implemented by a
server 120, a computing device 102,122, a network page test
injector 140, a test repository 130, or a network page test
system 114, to name a few. Although any number of systems,
in whole or in part, can implement the process 200, to sim
plify discussion, the process 200 will be described with
respect to particular systems.
The process 200 begins at block 202 where, for example, a

test injector Script identifies one or more tests to run on a
network page under test. As previously stated, the test injector
Script may be injected into the network page by a network
page test system 114 or a network page test injector 140.
Some example embodiments for identifying the one or more
tests to run on the network page are described in more detail
with reference to FIG. 3 below.
At block 204, the test injector script modifies the network

page under test to include one or more test resources corre
sponding to the identified one or more tests. The one or more
test resources can include test Scripts (e.g., JavaScript,
ActionScript, etc.), test data, or any other type of testing
resource that may facilitate performing one or more tests of a
network page. Some example embodiments for accessing the
test resources are described in more detail with respect to
FIG. 3 below. Modifying the network page may include
modifying a document object model (DOM) of the page to
include one or more of the test resources identified at the
block 204. Further, in some cases, modifying the network
page may include providing a location for test results to be
provided. This location may include another application,
another computing system, a repository, and/or to a display to
present to a user. In some cases, the network page may be
modified dynamically without a refresh of the network page
or of the entire network page. This may be accomplished, e.g.,
using Asynchronous JavaScript and XML (Ajax) techniques.

US 9,262,311 B1
7

Some example embodiments for modifying the network page
are described in more detail with respect to FIGS. 4A and 4B.
The network application 112, at block 206, executes the

one or more tests utilizing the one or more test resources of
block 204. The one or more tests can include any type of test
including tests that may be difficult if not infeasible to per
form using existing test tools that rely on specialized test
environments. For example, the types of tests may include
tests that require a user to log in as an end user instead of as a
special test user with user credentials stored in test code. As a
second example, the types of tests may include tests that can
check specific behavior in specific browsers by performing
the tests within the browsers. These types of tests can be more
accurate than tests performed by test tools that emulate a
browser because, for example, the emulated browser may not
be precise or may not include configuration modifications
made by end-users. A third example of types of tests that may
be performed include regression tests that may be specific to
a user, browser, or other environmental factor associated with
an execution environment. In some cases, the tests may be
executed without generating a test container around the net
work page or without encapsulating the network page with a
test environment. The network application 112 may execute
the tests and/or initiate test processes by processing nodes of
the DOM that include the test resources. In some cases, pro
cessing the nodes of the DOM that include the test resources
may be similar to processing the DOM for a non-modified
network page. In some embodiments, the block 206 may
include recording and/or logging results of executed tests to a
repository, such as the test repository 130. Further, in some
embodiments, after the one or more tests have been executed;
test resources, resource identifiers, and/or test code may be
stripped out or removed from the network page. Removing
the test code or resource identifiers may include removing
corresponding nodes from the DOM for the network page
under test. In some embodiments, at least some of the tests
may be performed by an external system, Such as the servers
120 or the interactive computing system 110.

After the tests are executed, a result of the test may be
presented to a user (e.g., an administrator or test engineer). In
Some cases, the user can review the test results and decide
whether modifications should be made to the network page or
whether additional testing should be performed. Further, a
history of the tests performed and the results of the tests may
be stored at the test repository 130. In certain embodiments,
one or more additional tests may be performed in response to
a result of a test. These additional tests may be identified in a
number of ways including by metadata in the network page,
by the test code previously executed, by information stored at
the test repository 130, and the like.

In some embodiments, the process 200 may be performed
using a headless network application, such as a headless
browser. Advantageously, in certain embodiments, using a
headless network application enables testing to be performed
in an automated manner. For example, in Some cases, the
results of an initial batch of tests may be provided to a network
page test system 114, which may then initiate additional tests
based on the result of the tests executed at the block 206. In
other words, in Some cases, the test injector Script can load a
master Script that may performan initial set of tests or actions,
and based on the result of the tests, additional test scripts may
be loaded and initiated by the test injector script. One poten
tial benefit of loading tests selectively can be a reduction of
the impact testing may have on the performance of the net
work page. While reducing the performance impact of testing
on a network page may be desirable for some or all users, it
can be particularly desirable when tests are performed on the

5

10

15

25

30

35

40

45

50

55

60

65

8
computing systems of end-users, who may prevent tests from
running to completion if they impact the end-users’ quality of
service.

Although the previous example involving a master script is
described in the context of a headless browser, it is not limited
as such. In other words, a similar process may be performed
with respect to any type of network application 112. Further,
using a headless browser or headless application can enable
results of performing a test to be stored in a memory or
memory buffer. Accordingly, the results can be inspected
programmatically instead of, or in addition to, being pre
sented on a display to a user to analyze.

In some cases, a computer processor or other hardware
device may perform one or more of the blocks of the process
200 in response to a request by the test injector script. For
example, a hardware processor of the user computing device
102 or of the server 120 may perform some or all of the
process 200 in response to a request from the test injector
Script.
Example Test Identification Process

FIG. 3 presents a flowchart of an embodiment of a test
identification process 300. The process 300 can be imple
mented by any system that can identify tests and/or load test
resources for testing a network page. For example, the pro
cess 300, in whole or in part, can be implemented by a server
120, a computing device 102,122, a network page test injec
tor 140, a test repository 130, or a network page test system
114, to name a few. In some embodiments, at least parts of the
process 300 may be performed as part of the block 202 and/or
204. Although any number of systems, in whole or in part, can
implement the process 300, to simplify discussion, the pro
cess 300 will be described with respect to particular systems.
The process 300 begins at block 302 where, for example,

the test injector Script detects an occurrence of a trigger to
perform a test process on a network page. The network page
to be tested may include the test injector Script performing the
block 302. However the block 302 is not limited as such. For
example, in some cases the block 302 may be performed by a
network page test system 114 included in a network applica
tion 112. The trigger detected at the block 302 may include
receiving a command from a user, such as an administrator,
via a network application 112 interface. Such as a console or
command line interface. Alternatively, or in addition, the
trigger may be the detection of an error. Another example of
a test trigger may include a command provided as a query
parameter. In some cases, this query parameter trigger may
cause one or more tests to be run almost immediately, or when
the network page is accessed. By using a query parameter to
initiate testing of a network page, a number of network pages
may be tested in an automated fashion. In some cases, a script
or automated tool may be used to initiate testing of a set of
network pages by accessing the set of network pages using a
query parameter that triggers the testing of the set of network
pageS.

In some Such cases, at least Some of the process 200 and/or
300 may be performed or initiated by overriding or executing
code that overrides an error detection method or function
native to the network application 112.
At the block 304, the test injector script may scan the

network page to identify a first set of test resources for testing
the network page. These test resources may be identified
based on metadata or resource declarations included in the
network page code. This metadata may be added to the net
work page by a user. Such as a developer or administrator of
the network page. Further, the metadata may identify one or
more test resources and/or provide a location where one or

US 9,262,311 B1
9

more test resources may be accessed. An example of test
metadata that may be added to a network page is illustrated
below in Code Fragment 1.
Code Fragment 1: Test Metadata
<head>
<link rel="test:stylesheet” href="../test/additional.css/>
<link rel="test: script href="../test/page tests.js/>
</head>
In some cases, the test metadata may include a link to a

Cascading Style Sheet (CSS) file, as illustrated in Code Frag
ment 1. This CSS file may include any type of stylesheet for
presenting test results to a user. For example, the CSS may
cause elements of the network page to be highlighted or
encircled by a box if a test related to the elements fails. In
some cases, the CSS may be omitted from the test metadata.
For example, test results may be determined based on the
behavior of the network page. As a second example, a
stylesheet included with the network page may present the
test results as existing stylesheets may be used to highlight a
test result without the inclusion of an additional stylesheet in
the test metadata.

At the block 306, the test injector script may load a first set
of test resources. As previously described with respect to the
block 204, the test injector script may modify the network
page under test to include the test resources. These test
resources may be included as part of the DOM of the network
page under test. Further, loading the first set of test resources
may include accessing a test repository 130 that includes at
least some of the identified test resources. Alternatively, or in
addition, loading the first set of test resources may include
accessing a local store or any other system that may be acces
sible by the user computing device 102 and/or computing
device 122 for accessing code and/or data that may be used as
test resources. In some cases, loading the first set of test
resources may include accessing the servers 120 to load the
test resources and/or to cause execution of one or more tests
corresponding to the identified test resources. In some
embodiments, the block 306 is omitted. For example, if no
test resources are identified at the block 304 when scanning
the network page, the block 306 may be skipped or omitted.
As a second example, if the identity of test resources included
in the network page is overridden or Superseded by a user
command or the identity of test resources via query param
eters, the block 306 may be omitted. In cases where some test
resources are identified by scanning the network page and
Some test resources are identified by query parameters, the
block 306 may be performed for at least the test resources
identified by scanning the network page at block 304.

At block 308, the test injector script may identify a second
set of test resources from one or more query parameters.
These query parameters may be included as part of a uniform
resource locator (URL) string or uniform resource indicator
(URI) string used to access the network page. In some cases,
the query parameters may include metadata included as part
of the URL or URI. Further, as with the metadata described
above with respect to the block 304, the query parameters
may identify one or more test resources and/or provide a
location where one or more test resources may be accessed.
An example of a URL with query parameters for a network
page is illustrated below in Code Fragment 2.
Code Fragment 2: URL Test Metadata
http:// . . . /page.html?stylesheet=./test/additional.css&

Script./test/page tests.js
At block 310, the test injector script loads the second set of

test resources. The block 310 may include some or all of the
embodiments previously described with respect to the block
306. Further, in some embodiments, the block 310 is omitted.

10

15

25

30

35

40

45

50

55

60

65

10
For example, if no test resources are identified at the block
308 when accessing or processing the query parameters, or is
no query parameters exist, the block 310 may be skipped or
omitted. As a second example, if the identity of test resources
included in the query parameters is overridden or Superseded
by a user command, the block 310 may be omitted. In cases
where some test resources are identified by scanning the
network page and some test resources are identified by query
parameters, the block 310 may be performed for at least the
test resources identified from the query parameters at block
3O8.
One example implementation of the process 300 includes

adding identified test resources to a dictionary object having
one or more key-value pairs where the keys represent
resource types (e.g., stylesheet, Script, etc.) and the values are
lists of the specific resource URLs. An example of this imple
mentation is illustrated below in Code Fragment 3.
Code Fragment 3: Test Identification
resources={ }
for link in headgetFlementsByTagName (link):
if link...rel in test:stylesheet, test:script:

add from link(link, resources)
query params parse params(window.location)
for kind in query params.keys():
if kind in stylesheet, script:

for resource in query params kind:
add from param(resource, kind, resources)

As can be seen from the Code Fragment 3, the add from
link method can add stylesheets and scripts to a dictionary
object, “resources.” that are identified from the network page
metadata. In some cases, adding the stylesheets and Scripts to
the dictionary object may ensure that no two elements resolve
to the same physical resource and can prevent a test resource
from being added to more than once to the DOM. Similarly,
the add from param method may add stylesheets and Scripts
identified from query parameters to the dictionary object.

In certain embodiments, one or more of the blocks of the
process 300 may be performed in a different order and/or in
parallel. For example, the blocks 308 and 310 may be per
formed before the blocks 304 and 306. As a second example,
the blocks 304 and 308 may be performed in parallel. In other
embodiments, the process 300 is performed specifically in the
order illustrated in FIG. 3. Advantageously, in certain
embodiments, by performing the process 300 in the order
presented in FIG. 3, a user may override the identity of test
resources included in the network page with alternative test
resources identified via the query parameters. For example, in
Some cases a test resource may be identified by metadata
included in the code of the network page. This test resource
may be identified as part of the block 304. A user (e.g., a
developer user) may override this test resource by including
the identity of an alternative test resource with the same
identifier but a different location as part of a query parameter
accessed at the block 308. In some embodiments, the blocks
304 and 306 may be optional. In other embodiments the
blocks 308 and 310 may be optional. In other words, in some
cases, test resources may be identified based on metadata
included in the network page or based on query parameters,
but not both. However, in other cases, as previously
described, test resources may be identified based on both
metadata in the network page code and query parameters.

In some cases, a computer processor or other hardware
device may perform one or more of the blocks of the process
300 in response to a request by the test injector script. For
example, a processor of the user computing device 102 of a
server 120 may perform some or all of the process 300 in
response to the test injector Script.

US 9,262,311 B1
11

Example Document Object Model
FIG. 4A illustrates an example of a portion of a document

object model 400 for a network page. Although not limited as
such, a DOM is generally illustrated in a tree format as shown
in FIG. 4A. The DOM 400 includes a head element 402 and 5
a body element 404 corresponding to a head and a body of
network page code. Each of these elements 402 and 404 may
include a number of subelements. For example, the head
element 402 may include a link element 410. Each element
may in turn point to additional Subelements until reaching a 10
leaf node that includes data of a type corresponding to the
parent element. For example, a text-based element, such as a
title, may include text in the leaf node. Similarly, an image
element may include a link to an image and a link element
may include a reference to another test resource located at 15
another network location. In some cases, some of the ele
ments may include test metadata for identifying one or more
test resources that may be loaded as part of a test process, Such
as the process 300. For example, in the DOM400, the element
410 is a link element which includes a subelement 412 refer- 20
encing a stylesheet for presenting test results. This subele
ment may in turn include another Subelement 414 that points
to a location of a test script.

FIG. 4B illustrates an example document object model 450
for the same network page represented by the DOM 400, but 25
with a loaded test resource. As seen in the FIG. 4B, the DOM
450 includes much of the elements of the DOM 400 from
FIG. 4A. For example, the DOM 450 includes the element
410 with subelement 412 including a link to a test resource.
As previously described, a test injector Script can identify a 30
test resource to load based on metadata included in a network
page. For example, the test injector script can determine from
the element 410 to load a test resource identified in the sub
element 412. The test injector script can modify the DOM to
include the test resource. This is illustrated by the element 452 35
which includes a script type identified in subelement 454 and
a link to the script in subelement 456. This element may, for
example, be loaded from a test repository 130.

In some embodiments, test resources or test scripts may be
appended to the bottom of a network page's code. In Such 40
cases, the test resources or test Scripts do not block the rest of
the network page from loading. If asynchronous code is used,
the test resources or test Scripts may be inserted throughout
the network page code without preventing the network page
from being loaded. 45
One example of a process for modifying a network page,

such as part of the block 204 is illustrated below in Code
Fragment 4. In some cases, the code for modifying a network
page may be JavaScript that can load additional JavaScript for
performing network page tests. As previously stated, modi- 50
fying the network page may include modifying the DOM of
the network page to include test resources identified by meta
data included in the network page or query parameters
included with the URL for accessing the network page. It is
notable that in the example of Code Fragment 4, the process 55
of modifying the page occurs if metadata is identified during
execution of Code Fragment 3. Thus, in some cases, the test
injector Script may be retained in a production network page
while removing test metadata without adverse effects. In
Some such cases, future testing may be performed on the 60
production network page by including appropriate query
parameters in a URI string for accessing the network page that
references test resources stored, for example, at the test
repository 130.
Code Fragment 4: Page Modification 65
if len(resources)>0:
add to page(css, test dir(mocha.css))

12
add to page(script, test dir(mocha.js))
add to page(script, test dir(chai.js))
add results div()
for kind in stylesheet, script:

for resource in resourceskind:
add to page(kind, resource)

One example of a resulting network page after the modifi
cation of the network page to include one or more test
resources identified in the metadata of the network page is
illustrated in Code Fragment 5.
Code Fragment 5: Network Page Test Metadata
<head>
<script type="text/javascript src="../test/injector.js'></

scripts
<link rel="stylesheet href="../test/node modules/mocha/

mocha.css/>
<script type="text/javascript'

src="../test/node modules/mocha/mocha.js'></scriptd
<script type="text/javascript'

src="../test/node modules/chai/chaijs'></scriptd
<link rel="stylesheet” href="../test/additional.css/>
<script type="text/javascript src="../test/page tests.

js'></scripts
</head>
As can be seen from the Code Fragment 5, in Some cases,

one or more test frameworks may be utilized to facilitate
performing tests associated with the test resources and pre
senting the results of tests to a user. For example, open-source
JavaScript testing frameworks. Such as Mocha, and libraries,
Such as Chai, may be used to facilitate executing the tests.
These test frameworks may be added to the network page
under test as well as the test resources loaded from the
“resources' dictionary object described with respect to Code
Fragment 3.

Further, as can be seen in Code Fragment 5, to generate the
modified network page, which may be obtained by modifying
the DOM, the CSS links identified in the test metadata of
Code Fragment 1 can be transformed by replacing the “rel
attribute from “test:stylesheet” to “stylesheet.” Moreover, the
Scripts may be transformed by changing the “link’ element
type to a “script element type, removing the “rel' attribute,
adding the “type' attribute with the value “test/javascript'
and changing the attribute name from “href to “src for the
destination link.
Terminology
A number of computing systems have been described

throughout this disclosure. The descriptions of these systems
are not intended to limit the teachings or applicability of this
disclosure. For example, the computing device 122 described
herein can generally include any computing device(s). Such
as desktops, laptops, servers, and distributed computing sys
tems, to name a few. As a second example, the user computing
device 102 can generally include any computing device(s),
Such as desktops, laptops, servers, video game platforms,
television set-top boxes, televisions (e.g., internet TVs), com
puterized appliances, and wireless mobile devices (e.g. Smart
phones, PDAs, tablets, electronic book readers, or the like), to
name a few. Further, it is possible for the user systems
described herein to be different types of devices, to include
different applications, or to otherwise be configured differ
ently. In addition, the user Systems described herein can
include any type of operating system (“OS). For example,
the mobile computing systems described herein can imple
ment an AndroidTM OS, a Windows(R OS, a Mac(R) OS, a
Linux or Unix-based OS, or the like.

Further, the processing of the various components of the
illustrated systems can be distributed across multiple

US 9,262,311 B1
13

machines, networks, and other computing resources. In addi
tion, two or more components of a system can be combined
into fewer components. For example, the various systems
illustrated as part of the interactive computing system 110 can
be distributed across multiple computing systems, or com
bined into a single computing system. Further, various com
ponents of the illustrated systems can be implemented in one
or more virtual machines, rather than in dedicated computer
hardware systems. Likewise, the data repositories shown can
represent physical and/or logical data storage, including, for
example, storage area networks or other distributed Storage
systems. Moreover, in some embodiments the connections
between the components shown represent possible paths of
data flow, rather than actual connections between hardware.
While Some examples of possible connections are shown, any
of the Subset of the components shown can communicate with
any other Subset of components in various implementations.

Depending on the embodiment, certain acts, events, or
functions of any of the algorithms, methods, or processes
described herein can be performed in a different sequence,
can be added, merged, or left out altogether (e.g., not all
described acts or events are necessary for the practice of the
algorithms). Moreover, in certain embodiments, acts or
events can be performed concurrently, e.g., through multi
threaded processing, interrupt processing, or multiple proces
sors or processor cores or on other parallel architectures,
rather than sequentially.

Each of the various illustrated systems may be imple
mented as a computing system that is programmed or config
ured to perform the various functions described herein. The
computing system may include multiple distinct computers
or computing devices (e.g., physical servers, workstations,
storage arrays, etc.) that communicate and interoperate overa
network to perform the described functions. Each such com
puting device typically includes a processor (or multiple pro
cessors) that executes program instructions or modules stored
in a memory or other non-transitory computer-readable Stor
age medium. The various functions disclosed herein may be
embodied in Such program instructions, although some or all
of the disclosed functions may alternatively be implemented
in application-specific circuitry (e.g., ASICs or FPGAs) of the
computer system. Where the computing system includes mul
tiple computing devices, these devices may, but need not, be
co-located. The results of the disclosed methods and tasks
may be persistently stored by transforming physical storage
devices, such as Solid state memory chips and/or magnetic
disks, into a different state. Each process described may be
implemented by one or more computing devices, such as one
or more physical servers programmed with associated server
code.

Conditional language used herein, such as, among others,
“can.” “might.” “may.” “e.g. and the like, unless specifically
stated otherwise, or otherwise understood within the context
as used, is generally intended to convey that certain embodi
ments include, while other embodiments do not include, cer
tain features, elements and/or states. Thus, such conditional
language is not generally intended to imply that features,
elements and/or states are in any way required for one or more
embodiments or that one or more embodiments necessarily
include logic for deciding, with or without author input or
prompting, whether these features, elements and/or states are
included or are to be performed in any particular embodi
ment. The terms “comprising.” “including.” “having,” and the
like are synonymous and are used inclusively, in an open
ended fashion, and do not exclude additional elements, fea
tures, acts, operations, and so forth. Also, the term 'or' is used
in its inclusive sense (and not in its exclusive sense) so that

10

15

25

30

35

40

45

50

55

60

65

14
when used, for example, to connectalist of elements, the term
“or means one, some, or all of the elements in the list. In
addition, the articles “a” and “an are to be construed to mean
“one or more' or “at least one' unless specified otherwise.

Disjunctive language such as the phrase “at least one of X,
Y, or Z, unless specifically stated otherwise, is otherwise
understood with the context as used in general to present that
an item, term, etc., may be either X, Y, or Z, or any combina
tion thereof (e.g., X, Y, and/or Z). Thus, such disjunctive
language is not generally intended to, and should not, imply
that certain embodiments require at least one of X, at least one
of Y, or at least one of Z to each be present.

Unless otherwise explicitly stated, articles such as “a” or
“an should generally be interpreted to include one or more
described items. Accordingly, phrases Such as "a device con
figured to are intended to include one or more recited
devices. Such one or more recited devices can also be collec
tively configured to carry out the stated recitations. For
example, "a processor configured to carry out recitations A, B
and C can include a first processor configured to carry out
recitation A working in conjunction with a second processor
configured to carry out recitations B and C.

While the above detailed description has shown, described,
and pointed out novel features as applied to various embodi
ments, it will be understood that various omissions, Substitu
tions, and changes in the form and details of the devices or
algorithms illustrated can be made without departing from the
spirit of the disclosure. Thus, nothing in the foregoing
description is intended to imply that any particular feature,
characteristic, step, operation, module, or block is necessary
or indispensable. As will be recognized, the processes
described herein can be embodied within a form that does not
provide all of the features and benefits set forth herein, as
Some features can be used or practiced separately from others.
The scope of protection is defined by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.
What is claimed is:
1. A computer-implemented method for testing a network

page, the computer-implemented method comprising:
as implemented by a computing system including one or
more hardware processors,
in response to a test trigger:

identifying, using a test injector Script, one or more
tests to run on a network page from test identifica
tion metadata associated with the network page,
wherein code for the test injector script is included
with code for the network page, wherein the one or
more tests are identified based at least in part on the
detection of an anomaly in a particular execution
environment, the particular execution environment
comprising a production environment separate
from a test environment, wherein at least one test
corresponds to testing for a specific operational
behavior within a specific host application capable
of executing the network page;

scanning network page code of the network page to
identify a first set of test resources corresponding to
the identified one or more tests;

modifying, using the test injector Script, the network
page to inject the first set of test resources into the
network page, wherein modifying the network
page comprises modifying a document object
model (DOM) of the network page to include at
least the first set of test resources, wherein at least
one of the first set of test resources comprises

US 9,262,311 B1
15

executable code, and wherein at least one test cor
responds to testing for a specific operational behav
ior within a specific host application of the particu
lar execution environment capable of executing the
network page;

identifying an alternative test resource from a query
parameter included with a network page identifier
string of the network page;

overriding a test resource from the first set of test
resources with the alternative test resource to
obtain a second set of test resources, wherein a first
identifier of the test resource and a second identifier
of the alternative test resource are the same, and
wherein a first storage location of the test resource
and a second storage location of the alternative test
resource are different;

modifying the network page to inject the second set of
test resources into the network page;

executing the one or more tests utilizing the second set
of test resources without generating a test container
around the network page, wherein at least one of
the second set of test resources comprises execut
able code, wherein executing the one or more tests
includes performing regression testing correspond
ing to the particular execution environment;

identifying a linked network page that is linked to the
first network page;

executing a test on the linked network page using the
test injector Script included with the network page;
and

removing test metadata corresponding to the second
set of test resources after execution of the one or
more tests is completed.

2. The computer-implemented method of claim 1, wherein
identifying, using a test injector Script, the one or more tests
comprises:

Scanning network page code of the network page to iden
tify the test identification metadata corresponding to the
first set of test resources; and

for each of the first set of test resources, determining a
location for the test resource based at least partially on
the test identification metadata and accessing the test
SOUC.

3. The computer-implemented method of claim 1, wherein
identifying, using a test injector Script, the one or more tests
comprises:

identifying the test identification metadata from a set of
query parameters, the test identification metadata corre
sponding to a first set of test resources; and

for each test resource of the first set of test resources,
determining a location for the test resource and access
ing the test resource.

4. The computer-implemented method of claim 1, further
comprising removing the first set of test resources from the
network page by modifying the DOM of the network page
upon completion of the one or more tests.

5. The computer-implemented method of claim 1, wherein
the test trigger comprises at least one of receiving a user
command configured to trigger a test, detecting an error with
respect to the network page, or receiving a query parameter
for triggering a test.

6. A system for testing a network page, the system com
prising:

a memory configured to store a test injector Script; and
one or more hardware processors in communication with

the memory, the one or more hardware processors con

10

15

25

30

35

40

45

50

55

60

65

16
figured to at least inject the test injector Script into a
network page. Such that the test injector Script at least:
identifies one or more tests to run on the network page

from test identification metadata associated with the
network page, wherein code for the test injector Script
is included with code for the network page, wherein
the one or more tests are identified based at least in
part on the detection of an anomaly in a particular
execution environment, the particular execution envi
ronment comprising a production environment sepa
rate from a test environment, wherein at least one test
corresponds to testing for a specific operational
behavior within a specific host application capable of
executing the network page;

scans network page code of the network page to identify
a first set of test resources corresponding to the iden
tified one or more tests;

modifies the network page to inject the first set of test
resources into the network page, wherein modifying
the network page comprises modifying a document
object model (DOM) of the network page to include at
least the first set of test resources, wherein at least one
of the first set of test resources comprises executable
code, and wherein at least one test corresponds to
testing for a specific operational behavior within the
specific host application of the particular execution
environment capable of executing the network page;

identifies an alternative test resource from a query
parameter included with a network page identifier
string of the network page;

overrides a test resource from the first set of test
resources with the alternative test resource to obtain a
second set of test resources, wherein a first identifier
of the test resource and a second identifier of the
alternative test resource are the same, and wherein a
first storage location of the test resource and a second
storage location of the alternative test resource are
different;

modifies the network page to inject the second set of test
resources into the network page;

executes the one or more tests utilizing the second set of
test resources without generating a test container
around the network page, wherein at least one of the
second set of test resources comprises executable
code, wherein executing the one or more tests
includes performing regression testing corresponding
to the particular execution environment;

identifies a linked network page that is linked to the
network page;

executes a test on the linked network page using the test
injector Script injected into the network page; and

removes test metadata corresponding to the second set of
test resources after execution of the one or more tests
is completed.

7. The system of claim 6, wherein the one or more hardware
processors are configured to inject the test injector Script into
the network page by adding code corresponding to at least a
portion of the test injector Script to network page code corre
sponding to the network page.

8. The system of claim 6, wherein the one or more hardware
processors are configured to at least inject the test injector
Script into a network page, such that the test injector Script
identifies the one or more tests by at least:

scanning network page code of the network page to iden
tify test metadata corresponding to the first set of test
resources; and

US 9,262,311 B1
17

for each of the first set of test resources, determining a
location for the test resource based at least partially on
the test metadata and accessing the test resource.

9. The system of claim 6, wherein the one or more hardware
processors are configured to at least inject the test injector
Script into a network page, such that the test injector script
further at least modifies the network page by modifying the
DOM of the network page to include at least some of the
second set of test resources.

10. The system of claim 9, wherein the one or more hard
ware processors are configured to at least inject the test injec
tor Script into a network page, such that the test injector script
further at least removes the second set of test resources from
the network page by modifying the DOM of the network page
upon completion of the one or more tests.

11. The system of claim 6, wherein the one or more hard
ware processors are located at a user computing device.

12. The system of claim 6, wherein the one or more hard
ware processors are located at an interactive computing sys
tem configured to provide access to the network page.

13. The system of claim 12, wherein the one or more
hardware processors are further configured to remove the test
injector script in response to an external request to access the
network page, the external request received from a computing
System not included in the interactive computing system.

14. The system of claim 13, wherein the one or more
hardware processors are further configured to remove test
metadata corresponding to the second set of test resources in
response to the external request to access the network page.

15. Non-transitory physical computer storage comprising
test injector instructions stored thereon that, when executed
by one or more processors upon injection into a network page,
are configured to at least:

identify one or more tests to run on the network page from
test identification metadata associated with the network
page, wherein code for the test injector script is included
with code for the network page, wherein the one or more
tests are identified based at least in part on the detection
of an anomaly in a particular execution environment, the
particular execution environment comprising a produc
tion environment separate from a test environment,
wherein at least one test corresponds to testing for a
specific operational behavior within a specific host
application capable of executing the network page:

Scan network page code of the network page to identify a
first set of test resources corresponding to the identified
one or more tests;

modify the network page to inject the first set of test
resources into the network page, wherein modifying
comprises modifying a document object model (DOM)
of the network page to include at least the first set of test
resources, wherein at least one of the first set of test
resources comprises executable code, and wherein at
least one test corresponds to testing for a specific opera
tional behavior within a specific host application of the
particular execution environment capable of executing
the network page:

identify an alternative test resource from a query parameter
included with a network page identifier string of the
network page:

10

15

25

30

35

40

45

50

55

18
override a test resource from the first set of test resources

with the alternative test resource to obtain a second set of
test resources, wherein a first identifier of the test
resource and a second identifier of the alternative test
resource are the same, and wherein a first storage loca
tion of the test resource and a second storage location of
the alternative test resource are different;

modify the network page to inject the second set of test
resources into the network page;

execute the one or more tests utilizing the second test
resources without generating a test container around the
network page, wherein at least one of the second test
resources comprises executable code, and wherein
executing the one or more tests includes performing
regression testing corresponding to the particular execu
tion environment;

identify a second network page that is linked to the network
page;

execute a test on the second network page using the test
injector instructions of the network page; and

remove test metadata corresponding to the second set of
test resources after execution of the one or more tests is
completed.

16. The non-transitory physical computer storage of claim
15,

wherein the test injector instructions are injected into the
network page by adding code corresponding to at least a
portion of the test injector instructions to network page
code corresponding to the network page.

17. The non-transitory physical computer storage of claim
15, wherein the test injector instructions, when executed by
one or more processors, are further configured to at least
identify the one or more tests by:

scanning network page code of the network page to iden
tify test metadata corresponding to the first set of test
resources; and

for each of the first set of test resources, determining a
location for the test resource based at least partially on
the test metadata and accessing the test resource.

18. The non-transitory physical computer storage of claim
17, wherein the test injector instructions, when executed by
one or more processors, are further configured to at least
remove the test metadata from the network page code.

19. The non-transitory physical computer storage of claim
15, wherein the test injector instructions, when executed by
one or more processors, are further configured to at least
modify the network page by modifying a document object
model (DOM) of the network page to include at least some of
the one or more of the second test resources.

20. The non-transitory physical computer storage of claim
15, wherein the test injector instructions, when executed by
one or more processors, are further configured to at least:

capture one or more test results from executing the one or
more tests; and

provide the one or more test results to a test repository.
21. The computer-implemented method of claim 1,

wherein the network page identifier string comprises one of a
Uniform Resource Indicator (URI) or a Uniform Resource
Locator (URL).

ck ck ci: ck ck

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 9,262,311 B1 Page 1 of 1
APPLICATION NO. : 14/095792
DATED : February 16, 2016
INVENTOR(S) : Simon Kurt Johnston

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In column 1 at line 61, Change “environment, to --environment.--.
In the Claims

In column 15 at line 28, In Claim 1, before “network delete “first.

In column 17 at lines 49-50. In Claim 15, after “modifying insert --the network page--.

Signed and Sealed this
Fourth Day of October, 2016

74-4-04- 2% 4
Michelle K. Lee

Director of the United States Patent and Trademark Office

