
(19) United States
US 20080259930A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0259930 A1
Johnston et al. (43) Pub. Date: Oct. 23, 2008

(54) MESSAGE FLOW MODEL OF (52) U.S. Cl. ... 370/395.2
INTERACTIONS BETWEEN DISTRIBUTED
SERVICES (57) ABSTRACT

A computer-implementable method, system and computer
(76) Inventors: Simon K. Johnston, Siler City, NC usable medium for defining a message flow model of inter

(US); Kevin E. Kelly Raleigh, NC actions between distributed services are presented. In a pre
(US). Jan J. Kratky Raleigh NC ferred embodiment, the method includes the steps of:

s capturing unidirectional network-level message traffic
(US); Steven K. Speicher, Apex, bet twork: identifvi d-point NC (US) etween services in a network: identifying service end-points

from information obtained from the uni-directional network
level message traffic; identifying message interactions of cap

Correspondence Address: tured uni-directional network-level message traffic between
LAW OFFICE OF UM BOCE identified service end-points; applying formal and informal
3839 BEE CAVE ROAD, SUITE 201 interface definitions to the captured unidirectional network
WEST LAKE HILLS, TX 78746 (US) level message traffic; categorizing each captured unidirec

tional network-level message traffic as being a public net
work-level message traffic or a private network-level message

(21) Appl. No.: 11/737,883 traffic; filtering E. captured E. E
message traffic to filter out any formally defined captured

(22) Filed: Apr. 20, 2007 uni-directional network-level message traffic; correlating
message exchanges for filtered uni-directional network-level

Publication Classification message traffic to identify a relationship between correlated
message exchanges; and analyzing the network according to

(51) Int. Cl. identified relationships between correlated message
H04L 2/56 (2006.01) exchanges.

4O2

CAPTURE NETWORK-4O4.
EVELMESSAGE

TRAFFIC

DENTIFY SERVICE-4-O6
END POINTS

IDENTIFYMESSAGEL-408,
NTERACTIONS

41O 4-12
APPLY FORMAL

INTERFACE DEFINITIONS

APPLY F.

ANALYZE

APPLY INFORMAL
NERFACE DEFINITIONS

IDENTIFYPUBLIC AND /44
PRIVATEMESSAGES

A13
LTER(S)

CORRELATEMESSAGE-413
EXCHANGES

All-Ivor ETWORK/42O

422

Patent Application Publication Oct. 23, 2008 Sheet 1 of 9 US 2008/0259930 A1

-

Purchasing Order OrderProcessing CUstomerRq Customers

1O2 OrderAck Customer 102 E. g 1O4. E. E 106 :
| g OrderStatus E. E. CustomerFault E. :
!-------- - - - - - - - - - :

- - - - - - - - -
r-------

-21 Orderstatus Shipping
OO 1O3

- - - - - - - - -

FG.1

Purchasing Order OrderProcessing CustomerRq i Customers

OrderAck : Customer
(102

OrderStatus 1O4. 1OO
- - - - - - - - - L -

-2-1 Sprio
1O3

1OO - - - - - - - - - :

FG.2

112

Purchasing Customers

OrderStatus

- - - - - - - - r Shipping

Patent Application Publication

41O
APPLY FORMAL

NTERFACE DEFINITIONS

Oct. 23, 2008 Sheet 2 of 9

CAPTURE NETWORK/-4-O4
LEVELMESSAGE

TRAFFIC

IDENTIFY MESSAGE
NTERACTIONS

413

F.G. 4

APPLY INFORMAL
INTERFACE DEFINITIONS

US 2008/0259930 A1

412

US 2008/0259930 A1 Oct. 23, 2008 Sheet 3 of 9

99C

Patent Application Publication

OZG

()

9OC SÍ 8 || || SÅS

9:7G HESMO}}{{ ZF7@ (ENMH), ÕÆG TEHS

Patent Application Publication Oct. 23, 2008 Sheet 4 of 9 US 2008/0259930 A1

(e) MessageExchangePatterns
O InOut (in: Request): Response
O Outln(Out: Notification); Response

FG. (3

<nterface>
CD OrderProcessing

) O AcceptOrder (in: Order): Acknowledgement
O CancelOrder (in: Order): Acknowledgement

(G) OrderProcessingService

<nterface>
(DOrderProcessingCallback

MyPurchasing
(Purchasing

3O4.

Patent Application Publication Oct. 23, 2008 Sheet 5 of 9 US 2008/0259930 A1

Ordering
(OrderingSpec -------- - OrderProcessing

ACCeptOrder AcceptOrder

ACCeptOrder

OrderStatusChanged

Forecasting
-21

9CO - - - - - - - - - - Shipping

OrderProcessing Customers

-2/ FIG 10
OOO

OrderProcessing SubmitOrder
OrderACCepted
OrderNotifications

ACCeptOrder
ACCeptOrcer

OrderStatusChanged

OrderStatus

F.G. 11

Patent Application Publication Oct. 23, 2008 Sheet 6 of 9 US 2008/0259930 A1

Patent Application Publication Oct. 23, 2008 Sheet 7 of 9 US 2008/0259930 A1

- - - - - - - -

Parallel

Walidation
AcceptOrder

ACCeptOrder

F.G. 1(3

US 2008/0259930 A1 Oct. 23, 2008 Sheet 8 of 9 Patent Application Publication

Patent Application Publication Oct. 23, 2008 Sheet 9 of 9 US 2008/0259930 A1

Sensitivity
1.

0.1

imports
O.

P
H -

O. 1

Fl

FG, 13

US 2008/0259930 A1

MESSAGE FLOW MODEL OF
INTERACTIONS BETWEEN DISTRIBUTED

SERVICES

BACKGROUND OF THE INVENTION

0001. The present invention relates in general to the field
of computers and similar technologies, and in particular to
software utilized in this field. Still more particularly, the
present disclosure relates to analyzing interactions between
distributed services in a network to create an activity based
model of the network.
0002. During the development of distributed systems, it is
difficult to identify functionality of different aspects of the
network. This difficulty stems from the nature of the system
as it has been deployed, and specifically the relationship
between the actual behavior and the intended design. As
business applications become more and more reliant upon
Service Oriented Architectures (SOA), and are therefore fun
damentally developed from a set of independent and distrib
uted services running on heterogeneous platforms using a
variety of communication protocols, the ability to understand
systems behavior becomes far more difficult. It is often the
case that such systems begin to exhibit emergent behavior,
which is complex behavior that was not anticipated from the
study of the simpler behavior of the constituent services.
Analyzing Such systems can therefore be prohibitively com
plex.

SUMMARY OF THE INVENTION

0003) To address the problem described above, presently
disclosed is a computer-implementable method, system and
computer-usable medium for defining a message flow model
of interactions between distributed services. In a preferred
embodiment, the method includes the steps of capturing
uni-directional network-level message traffic between ser
vices in a network; identifying service end-points from infor
mation obtained from the unidirectional network-level mes
sage traffic; identifying message interactions of captured uni
directional network-level message traffic between identified
service end-points; applying formal and informal interface
definitions to the captured uni-directional network-level mes
sage traffic, categorizing each captured unidirectional net
work-level message traffic as being a public network-level
message traffic or a private network-level message traffic;
filtering the captured unidirectional network-level message
traffic to filter out any formally defined captured uni-direc
tional network-level message traffic; correlating message
exchanges for filtered unidirectional network-level message
traffic to identify a relationship between correlated message
exchanges; and analyzing the network according to identified
relationships between correlated message exchanges.
0004. The above, as well as additional purposes, features,
and advantages of the present invention will become apparent
in the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
purposes and advantages thereof, will best be understood by
reference to the following detailed description of an illustra
tive embodiment when read in conjunction with the accom
panying drawings, where:

Oct. 23, 2008

0006 FIGS. 1-3 depict a small network having an exem
plary order processing service whose message flow is mod
eled in accordance with the present invention's steps for
examining and analyzing message characteristics to and from
the order processing service;
0007 FIG. 4 is a flow-chart of exemplary steps taken to
analyze message flow in a network;
0008 FIG. 5 depicts an exemplary computer in which the
present invention may be implemented;
0009 FIG. 6 illustrates a Unified Modeling Language
(UML) class used to illustrate message ambiguity in a stan
dard UML class;
0010 FIG. 7 depicts a primary services class described by
UML:
0011 FIG. 8 illustrates a difference between specification
and service depiction in accordance with the presently pre
sented network model;
0012 FIG.9 depicts an ordering service;
0013 FIG. 10 illustrates an observed message relationship
between two services;
0014 FIG. 11 depicts an observed message relationship
among three services;
0015 FIG. 12 is a diagram that demonstrates a set of
behavioral elements between services;
0016 FIG. 13 depicts an encapsulated process element;
0017 FIG. 14 illustrates a series of messages between
network elements;
0018 FIG. 15 depicts a composite illustration of newly
defined relationships between network elements in accor
dance with the present invention;
0019 FIG. 16 illustrates two services whose functionality
has been described in accordance with the present invention;
0020 FIG. 17 depicts a message relationship between two
service elements; and
0021 FIG. 18 illustrates a generic model used to describe
any element in a network.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

0022 Presented herein is a novel method for generating a
behavioral model of a network of software services. This new
model acts as an intermediary between highly granular trace
data (found in nodes) and the high level software component
view (of an entire network). Thus, presented herein is a Mes
sage Flow Model that is based on uni-directional message
exchanges between services, which is constructed from
observational trace data and/or informal trace data (e.g., writ
ten documentation). The model allows for reasoning that can
be used to augment the model with relationships such as
request-response or request-response-fault as they are iden
tified.
0023. A key advantage of the presently presented model is
that it allows the description of a service-oriented system in a
clear and coherent manner. Note that the specifics of message
types (schema) and body expression are not necessary to the
creation of the model. Rather, the presently presented model
focuses on capturing the message interactions between net
work services.
0024. Before presenting details of how the presently pre
sented network model is created, a simple example of one
component of the present invention is presented in FIGS. 1-3,
which presents interactions between three sets of services in
a network 100, specifically Purchasing service 102 (which
takes in purchase orders), OrderProcessing service 104

US 2008/0259930 A1

(which processes these orders), Customers service 106
(which provides a customer database), and Shipping service
108 (which ships the processed orders to the appropriate
customer) to execute the placement of an order for goods.
Note that, for exemplary purposes, it is assumed that a com
plete picture of interactions between the services is not avail
able under Web Services Description Language (WSDL) or
Some similar Interface Definition Language (IDL), since the
services shown may be hosted by another party, are not
described by any standard interface definition language (such
as WSDL), are only partially described by WSDL, or utilize
processes and interactions that are hidden from the public.
0025. For exemplary purposes, assume that the model
shown in FIG. 1 was generated from an analysis of messages
sent between the services (102,104,106, 108) collaborating
in the solution. Note that the use of dashed lines for the
services indicates that a detailed relationship with other ser
vices is not yet determined using the presently presented
method, and thus dashed lines merely describe a specifica
tion, rather than a complete service. Note also that messages
are denoted by lines between message connectors that have a
"> within the connectors to denote the directionality of the
message. Each line is uni-directional; therefore a request
response pair is denoted as two distinct lines. For example, as
shown in FIG. 1, a CustomerRq message is a request to and
the Customer message is a response from Customers service
106; thus, there is no modeling difference between an asyn
chronous response and a synchronous return type. The model
also denotes the “type' of the message with a textual anno
tation on the line, but the actual definition of the message
structure is deferred to another standard language.
0026. The model shown in FIG. 1 can then be further
refined. By looking at the interface definition language for the
OrderProcessing service 104, observations can confirm that
the Order and OrderAck messages are not independent, Such
that the acknowledgement message is the return from a syn
chronous operation. This relationship between messages is
denoted by a line shown inside OrderProcessing service 104.
0027. It is then discovered that the OrderStatus message is
sent back to the Purchasing service 102 and also to the third
party Shipping service 108 as a single logical unit of work. To
denote this, the lines for OrderStatus coming away from
OrderProcessing service 104 are joined together to show a
single message leaving the OrderProcessing service 104 and
arriving at two separate services (Purchasing service 102 and
Shipping service 108), as depicted in FIG. 2. The filled “dot'
that joins the lines represents an “AND” semantic, whereas
the open dot joining the lines inside the Customer service 106
represents an “OR” semantic.
0028. In this case, through observation of the Customers
service 106, a determination can be made that when a Cus
tomerRq message arrives at Customers service 106, Custom
ers service 106 always responds with either the Customer
message or the CustomerFault message. Note that whether
the model is refined manually (i.e., by a network engineer
reading documentation, calling a person who owns the Cus
tomers service 106, etc.) or by some tool analyzing the trace
(i.e., WSDL) is irrelevant to creating the model.
0029 Continuing with the example, assume that a discov
ery is made (either manually or automatically) that, when the
interface definition for OrderProcessing service 104 is re
examined, it is apparent that neither the CustomerRqor Cus
tomer interactions appear on a published interface 110 (e.g.,
WSDL), because CustomerRq and Customer interactions are

Oct. 23, 2008

internal to the logic of the Customers service 106. Thus, the
appropriate nodes 112 in OrderProcessing service 104 are
colored grey to denote this, as shown in FIG. 3. The identifi
cation of this kind of communication aids in understanding
the dependencies between services, dependencies which are
not documented independent of the implementation and
which can radically affect the ability to reuse or to replace a
particular service. Note that OrderProcessing service 104 is
now depicted as a solid box, indicating that OrderProcessing
service 104 is in fact a defined service, while Purchasing
service 102, Customers service 106 and Shipping service 108
are still viewed only as service specifications that are avail
able to OrderProcessing service 104.
0030. In the example shown in FIG. 1-3, a visual repre
sentation of the model based on message exchanges is pre
sented. Alternatively, this model may be represented in a
textual format, such as:

service ordering trace is
specification Purchasing is
message

Order: out Order;
OrderAck in Order:
OrderStatus: in

Order:
end;
specification OrderProcessing is
message

Order: in Order:
OrderAck: out OrderAck;
OrderStatus : out OrderStatus:

network
Order to OrderAck;

end;
service OrderProcessing implements OrderProcessing
is message
CustomerRq: out CustomerRq;
Customer in Customer;
CustomerFault: in CustomerFault:

end;
specification Shipping is
message

OrderStatus: in OrderStatus:
end;
specification Customers
is message
CustomerRq: in CustomerRq;
Customer out Customer;
CustomerFault: out
CustomerFault:

network
CustomerRq to Customer or CustomerFault;

end;
Se:S

p : Purchasing:
op: OrderProcessing:
sh :

Shipping:
C. :

Customers;
network
p.Order to op.Order;
op.OrderAck to p.OrderAck;
op.OrderStatus to p.OrderStatus and sh.OrderStatus;
p.CustomerRq to c. CustomerRq;
c. Customer to p. Customer;
c. CustomerFault to p. CustomerFault:

end;

0031 Referring now to FIG. 4, a flow-chart of exemplary
steps taken to define a message flow model of interactions
between distributed services in a network is presented. After

US 2008/0259930 A1

initiator block 402, uni-directional network-level message
traffic is captured (block 404). In one embodiment, this mes
sage traffic is captured by a network Sniffer 556 (shown below
in FIG. 5), which is controlled by a network analyzing ser
vice, which may utilize a system, including a computer Such
as Network Analyzing Computer (NAC)502, as shown below
in FIG. 5. Network Sniffer 556 monitors traffic between Ser
vices in a network, such as services 102-108 described above
in FIGS. 1-3. Such monitoring includes, but is not limited to,
recording header information (including message types,
Source and target addresses, etc.), recording and analyzing
any available WSDL information, recording reactions to par
ticular messages between two or more specific and/or speci
fied services, tracing port, network, and line usage, retrieving
written text documentation (human-readable) describing Ser
vices and interfaces, etc.
0032. As described at block 406, service end-points (e.g.,
services 102-108) are identified, either through information
derived from the network Sniffing operation, manually
through an examination of available network documentation,
or through similar automatic and/or manual methods.
0033 Message interactions are then identified (block
408). These interactions may be generally categorized as
“causations.” “correlations.” or “coincidences.” For example,
if messages are identified as Synchronous messages (e.g.,
“Request' and “Response'), then their interactions are
defined as “causations. Since the “Request always causes
the "Response.” However, messages that are asynchronous
messages (e.g., “Login' and “Token') are classified as “cor
relations. Since a token may or may not be supplied when a
user logs in. Identifying "correlation' messages may be per
formed by locating a same identifier (e.g., of a user) in both
messages. If no consistent pattern or common identifier or
other item identifies messages as being “causation' or “cor
relation' based, then “coincidence' is the default identifier
for the messages.
0034. At this point, either formal (block 410) or informal
(block 412) interface definitions are applied to the messages
that are being analyzed. An example of a formal interface
definition is information from a WSDL interface. Examples
of informal interface definitions are written operator manuals,
text files describing a service and/or network, personal
knowledge of a legacy system, etc.
0035. After applying the formal and/or informal interface
definitions, messages are identified as being public or private
(block 414). A public message is identified as a message
between two public service nodes. A private message is iden
tified as a message that either 1) remains within a service node
at all times or 2) communicates with a service that is not part
of the network being analyzed (and thus is “hidden').
0036. As shown in block 416, filter(s) are then applied to
the messages. That is, in order to methodically analyze mes
sages, only certain types of messages should be analyzed at
any one time—usually this is the focus of a problem being
determined or the analysis of the behavior of one or more
specific services in the network. Thus, any messages with
WSDL information can be evaluated by applying a filter that
only allows WSDL-enabled messages to be analyzed (block
420). Thereafter, other messages are analyzed according to
how they have been identified and defined (such as messages
described in a text user-file, etc.) until all messages have been
evaluated. By obtaining as many messages for evaluation as
feasible, and by building up the network model in a “bottom
up' manner, an accurate message flow model of interactions

Oct. 23, 2008

between distributeds services in a network is created, and the
process ends at terminator block 422.
0037. With reference now to FIG. 5, there is depicted a
block diagram of an exemplary Network Analyzing Com
puter (NAC) 502, in which the present invention may be
utilized. NAC 502 includes a processor unit 504 that is
coupled to a system bus 506. A video adapter 508, which
drives/supports a display 510, is also coupled to system bus
506. System bus 506 is coupled via a bus bridge 512 to an
Input/Output (I/O) bus 514. An I/O interface516 is coupled to
I/O bus 514. I/O interface 516 affords communication with
various I/O devices, including a keyboard 518, a mouse 520,
a Compact Disk-Read Only Memory (CD-ROM) drive 522, a
floppy disk drive 524, and a flash drive memory 526. The
format of the ports connected to I/O interface 516 may be any
known to those skilled in the art of computer architecture,
including but not limited to Universal Serial Bus (USB) ports.
0038 NAC 502 is able to communicate with a service
provider server 552 via a network 528 using a network inter
face 530, which is coupled to system bus 506. Network 528
may be an external network Such as the Internet, oran internal
network such as an Ethernet or a Virtual Private Network
(VPN). Service provider server 552 may utilize a similar
architecture design as that described for NAC 502.
0039. As described above, NAC 502 utilizes a network
sniffer 556 to sniff traffic from a Network Under Analysis
(NUA)554. This sniffed traffic forms the basis for a model of
NUA 554, as described herein.
0040. A hard drive interface 532 is also coupled to system
bus 506. Hard drive interface 532 interfaces with a hard drive
534. In a preferred embodiment, hard drive 534 populates a
system memory 536, which is also coupled to system bus 506.
Data that populates system memory 536 includes NAC 502's
operating system (OS) 538 and application programs 544.
0041 OS 538 includes a shell 540, for providing transpar
ent user access to resources such as application programs 544.
Generally, shell 540 is a program that provides an interpreter
and an interface between the user and the operating system.
More specifically, shell 540 executes commands that are
entered into a command line user interface or from a file.
Thus, shell 540 (as it is called in UNIX(R), also called a
command processor in Windows.(R), is generally the highest
level of the operating system software hierarchy and serves as
a command interpreter. The shell provides a system prompt,
interprets commands entered by keyboard, mouse, or other
user input media, and sends the interpreted command(s) to the
appropriate lower levels of the operating system (e.g., a ker
nel 542) for processing. Note that while shell 540 is a text
based, line-oriented user interface, the present invention will
equally well Support other user interface modes, such as
graphical, Voice, gestural, etc.
0042. As depicted, OS 538 also includes kernel 542,
which includes lower levels of functionality for OS 538,
including providing essential services required by other parts
of OS 538 and application programs 544, including memory
management, process and task management, disk manage
ment, and mouse and keyboard management.
0043. Application programs 544 include a browser 546.
Browser 546 includes program modules and instructions
enabling a WorldWideWeb (WWW) client (i.e., NAC502) to
send and receive network messages to the Internet using
HyperText Transfer Protocol (HTTP) messaging, thus
enabling communication with service provider server 552.

US 2008/0259930 A1

0044) Application programs 544 in NAC 502's system
memory also include a Network Analyzing Program (NAP)
548, which includes logic for implementing, preferably viaan
AOP logic that is included in NAP 548, the steps and pro
cesses described herein. In a preferred embodiment, service
provider server 552 also has a copy of NAP548, which may
be executed by or downloaded from service provider server
552, as described below. In one embodiment, NAC 502 is able
to download NAP548 from service provider server 552.
0045. The hardware elements depicted in NAC 502 are not
intended to be exhaustive, but rather are representative to
highlight essential components required by the present inven
tion. For instance, NAC 502 may include alternate memory
storage devices such as magnetic cassettes, Digital Versatile
Disks (DVDs), Bernoulli cartridges, and the like. These and
other variations are intended to be within the spirit and scope
of the present invention.
0046. As noted above, NAP 548 can be downloaded to
NAC 502 from service provider server 552. This deployment
may be performed in an “on demand” basis manner, in which
NAP548 is only deployed when needed by NAC 502. Note
further that, in another preferred embodiment of the present
invention, service provider server 552 performs all of the
functions associated with the present invention (including
execution of NAP548), thus freeing NAC 502 from using its
resources. In another embodiment, process Software for the
method so described may be deployed to service provider
server 552 by another service provider server (not shown).
0047. It should be understood that at least some aspects of
the present invention may alternatively be implemented in a
computer-useable medium that contains a program product.
Programs defining functions on the present invention can be
delivered to a data storage system or a computer system via a
variety of signal-bearing media, which include, without limi
tation, non-writable storage media (e.g., CD-ROM), writable
storage media (e.g., hard disk drive, read/write CD ROM,
optical media), and communication media, Such as computer
and telephone networks including Ethernet, the Internet,
wireless networks, and like network systems. It should be
understood, therefore, that Such signal-bearing media when
carrying or encoding computer readable instructions that
direct method functions in the present invention, represent
alternative embodiments of the present invention. Further, it
is understood that the present invention may be implemented
by a system having means in the form of hardware, Software,
or a combination of software and hardware as described
herein or their equivalent.
0048 Presented above is a general overview of a novel
method and system for defining a message flow model of
interactions between distributed services. Presented below is
a more detailed description of a preferred embodiment of
such a method. Specifically, now described are details of an
exemplary process used to describe a model that captures the
structural relationships between services and dynamic inter
actions between them as they enact business processes. The
model presented here is particularly useful in the context of
Service-Oriented Architectures (SOA). Described herein is a
new conceptual model based only upon the sending and
receiving of messages as well as a component description
language using a “bottom-up’ analysis approach. The result
ing model can be used as a network model framework or as
the basis for a service language—an example of which is used
to illustrate the issues presented herein.

Oct. 23, 2008

0049. While the model generally treats services as black
box implementations of service specifications, it does provide
both implementation connections and an action language to
describe enough of the behavior of a collaborating set of
services to facilitate simulation or other reasoning about these
services.
0050. While developing both tools and guidance for the
modeling and description of SOA solutions it is frequently the
case that the current set of technologies used to describe and
implement services fall short of being able to completely
describe them. Specifically it is hard to model the complete
specification of a service, because WSDL only describes the
provided interface of a service and ignores the notion of a
reciprocal or required interface.
0051 While the analysis of these problems has focused on
web services it can be generalized to cover software services
as a broader concept and even more broadly to all software
components.
0.052 WSDL is the most commonly used method for
describing the interface to web services, and does so in a
typical component/interface manner presenting an interface
as a named set of operations. Alternatively, other interface
descriptors may be used to perform the function of WSDL as
described herein. Examples of other interface forms include,
but are not limited to, those used by JavaTM interfaces,
COBOL copy books, etc.
0053 Simple Object Access Protocol (SOAP) 1.2 intro
duced the notion of a Message Exchange Pattern (MEP) as
either a single unidirectional or combination of messages
used commonly for some purpose. WSDL 2.0 codifies and
completes the set of MEPs:

0054) In-Only no faults
0055 Robust In-Only message triggers fault
0056. In-Out fault replaces message
0057. In-Optional-Out message triggers fault
0.058 Out-Only no faults
0059 Robust Out-Only message triggers fault
0060 Out-In fault replaces message
0061 Out-Optional-In fault replaces message}

0062. In some cases, is can be difficult to distinguish the
in-out case from the out-in case, since most programming
languages and design languages tend to see an operation only
from the requester's viewpoint. For example, in the Unified
Modeling Language (UML) class 602 shown in FIG. 6,
operation OutIn may or may not convey the desired meaning
intuitively. This leads to specifications which do not express
all the dependencies between services. Notifications sent by
services tend not to be captured on the specification, and are
buried in the implementation as calls out from the service
provider to a consumer.
0063. When modeling an interface, it becomes difficult to
distinguish the difference between In-Out and Out-In when
described as operations. To model this difference in the Uni
fied Modeling Language (UML), the provider is modeled as
one interface, while notifications or callback messages are
modeled as a second interface. For example, as shown in FIG.
7, a primary service 702 accepts new orders and allows for
orders to be canceled.
0064. Thus the complete definition of the service specifi
cation actually requires three model elements, which results
in extensive overhead. This initial observation leads to a
rethinking of the underlying structural elements required to
describe a service interface—are classical operations the cor
rect basis? Thus, rather than trying to capture operations as

US 2008/0259930 A1

named sets of messages or parameters, a model described
herein is expressed in terms of the individual messages.
Rather than expressing a set of operations that may be
invoked by the sending and receiving of message, a service is
specified only in terms of the messages it responds to and
which it sends out. This model is therefore expressed in a
manner more fine-grained than the MEP in WSDL, thus there
is no mismatch in semantics.
0065 Hidden Service Dependencies raises another issue
when trying to develop a model that shows the inter-depen
dencies between services in a solution. Specifically, using
typical Web Service standards causes a number of inter-de
pendencies to be hidden from the model. A service publishes
a set of interfaces that it provides to consumers. In some cases
(such as the UML example previously shown), this set of
interfaces describes the reciprocal interface required to be
provided by a consumer. Unfortunately when this service
makes calls to another service in the course of its logic. Such
invocations are not exposed and made public. Publicly expos
ing Such invocations is not required, and it is rarely the case
that a service will document the set of other services upon
which it relies.
0066. The novel model represented herein describes a Ser
vice Oriented Architecture (SOA) solution as a network of
messages connections between service instances. The model
can be used to describe the implementation within (micro
flow) a service, or service operation, as well as the choreog
raphy (macro-flow) of messages between service instances.
In this second regard the model has to take into account
existing composition and flow languages and specifically
Web Services Business Process Execution Language (WS
BPEL), which is often used as a standard choreography lan
guage for Web Services.
0067. The presented model also provides a textual and
visual syntax. The reason for this is that the visual syntax can
be used to create 'scenario' diagrams (i.e., only presenting
information from the model as appropriate to a user in a
context). The use of the visual syntax to present views into the
model is useful. The textual syntax is not intended for this
purpose, and should capture all details of the model as it is the
persistent form of the model.
0068. The structural aspects of the model (definition of the
types of messages) corresponds to the use of XML Schema
and a subset of WSDL in the web services world. It also
provides additional capabilities not found in these standards.
Specification vs. Service Visualization
0069. Note that a service can implement a named service
specification, as shown FIG. 8. Purchasing 802 is a service
specification that is implemented by the service MyPurchas
ing 804. Thus, there is a visual distinction between the speci
fication and the service. First, the outline of the service is a
solid rather than a dashed line. Second, the service optionally
denotes the implemented specifications in parenthesis under
the service name. This is a useful graphical distinction, since
Some composite services will actually reference specifica
tions and not services, thus deferring the implementation
choice.
0070 The mechanism by which a service (implementa
tion) is selected to fulfill the role identified by a specification
is dependant upon deployment-time configuration. Note that
service shown in FIG. 8 may be implemented with other
technology. For example, while a service specification can be
described using this model, at deployment time a Java imple
mentation is provided for the specification. Thus, the behav

Oct. 23, 2008

ior of this Java implementation is entirely opaque as far as the
model described herein is concerned.

Service Composition

(0071. An elaboration of the FIGS. 1-3 is now presented.
Note that none of the elements in FIGS. 1-3 describes or owns
the wiring between the message connectors, so there has to be
a containing element. Pseudocode for a service declaration
for the services/specifications described in FIGS. 1-3 is:

Service purchasing is
using
p : Purchasing:
o: OrderProcessing:
s: Shipping:

network
p.SubmitOrder to O.AcceptOrder;
O.AcceptOrder to p.OrderAccepted;
o.OrderStatusChanged to

p.OrderNotifications and S.OrderStatus;
end;

0072 The service shown here is termed an encapsulated
service, since it does not implement any particular previous
specification, and therefore does not expose any messages for
an outside consumer to use. Such a service is often used as the
outer container for a system.
0073. The introduction of the keyword network provides a
mechanism to connect messages together between the Ser
vices used internally by the declaration. Each “wire' state
ment in the network section is directional; it starts at an
outbound message connector and terminates at one or more
inbound message connectors. Note also that these wires are
not named, thus there is no need to reference the wires
directly.
0074. In terms of composite services the model is simple
and recursive. A service (not a service specification) may
declare a set of services that it uses and then define the
network of wires that connect it to these used services. This
feature is illustrated in an exemplary manner in the system
900 shown in FIG. 9.

(0075. As shown by the service described, “Ordering”
implements the specification “OrderingSpec. This specifica
tion ("OrderingSpec') provides a set of messages and inter
nally relies on the implementation of three service specifica
tions to perform the actual work. The following is the textual
form of both the specification and the service itself.

specification OrderingSpec is
importschema http://tempuri.org/ordering:
messages

AcceptOrder: in Order,
AcceptOrder: out Acknowledgement;
CancelOrder: in Order,
CancelOrder: out Acknowledgement;
OrderStatusChanged: Out Status;

end;
service Ordering implements OrderingSpec is
Se:S

o: OrderProcessing:
f: Forecasting:
s: Shipping:

US 2008/0259930 A1

-continued

network
AcceptOrder to O.AcceptOrder;
O. AcceptOrder to

AcceptOrder and fNewOrder;
o.OrderStatusChanged to

OrderStatusChanged and S.OrderStatus;
end;

0076 Note that the import schema keywords has been
added, and that there is no language to describe data or mes
sage structures. The presently presented model does not have
a type language. Rather, in a preferred embodiment it relies
entirely upon Extensible Markup Language (XML) Schema.
This line imports all the types in an XML Schema identified
by the Uniform Resource Identifier (URI) that follows.

Implementation Message Connections
0077. In the following example, the hidden dependency
issue introduced earlier is addressed. Added is the ability to
define messages on a service, which are not exposed through
the public specification and are therefore intended to support
internal logic. Thus, consider the example system 1000
depicted in FIG. 10. OrderProcessing service in the course of
accepting an order needs particular details of a customer, and
so makes a call to the Customers service. It makes no sense to
add the messages CustomerRq and Customer to the specifi
cation for order processing, and so allowance is made for
messages to be declared on a service definition for this pur
pose.
0078. In the visual notation shown in FIG. 10, these ser
Vice-implementation messages are denoted by a filled shad
ing. In the textual format, the same messages construct is used
within in the service declaration that was previously used on
specifications.

service OrderProcessing.
Se:S

c: Customers:
messages
CustomerRq: Out CustomerQuery;
Customer: in CustomerDetails:

network
CustomerRq to c.CustomerQuery;
c. CustomerDetails to CustomerDetails:

end;

0079. Note that the placement of connectors on the visual
Syntax has no significance, either in order or on which edge
they appear.

Denoting Message Exchanges

0080 Previously described is the fact that the model here
does not provide structures, such as operations or direct rep
resentations of the message exchange patterns introduced
above. It is valuable in many cases, however, to be able to
visualize the logical relationships between messages
expressed in the presently described model. Such as denoting
the possible responses for a given request message. It is only
possible to describe these relationships on service specifica
tions, and so specify externally perceived behavior—a ser
vice has to provide the detailed logic and behavior that imple

Oct. 23, 2008

ments these described relationships. In this case it is possible
to use the network wiring section of the specification to wire
message connectors on the inside of the component. This is
shown in the example shown as network 1100 in FIG. 11.
I0081. As depicted, when Purchasing sends the Accep
tOrder message to the OrderProcessing service, the response
message is automatically sent back to the client. Note that the
OrderStatusChanged notification is also sent as it is also
wired to the AcceptOrder pair. Thus, stated textually:

specification OrderProcessing...
network

AcceptOrder in to
AcceptOrder out and OrderStatusChanged;

end;

I0082) Note that to disambiguate the two messages with the
same name, a keyword “in” or “out' in brackets is used after
the message name. It is not legal to have two same-named
messages without such disambiguation.

Behavioral Model

I0083. Most ADLs do not provide a detailed semantic
model for the behavior of the components they describe. And,
while it does seem that the structural and behavioral aspects
of the service message model should be kept separate one
provides little value without the other.
I0084. The structural model presented above provides a
complete definition of all connections between services; in
effect all the messages, paths and dependencies are made
public and visible. However, what is missing is the specifica
tion of the behavior invoked when a message is received by a
service and the processing resulting in messages being sent
by a service.
I0085 While the goal of the present model is to capture the
structure of a collaboration of service completely, the behav
ior of services is described either partially or completely
depending on the need of the developer. The model does not
take the place of current implementation technologies and
while the creation of services that only contain messages
handlers (see below) can describe considerable portions of a
process it is expected that the model be able to generate BPEL
or some equivalent to describe the overall perceived process.
I0086 Behavior is expressed in terms of both the connec
tion patterns as well as the action language expressions
attached to message handlers.

Process Patterns

I0087. Referring now to FIG. 12, a diagram 1200 demon
strates a set of behavioral elements that can be represented in
this model as a combination of structural patterns involving
particular configurations of services and connectors.
I0088. In particular it is the case that these basic building
blocks of a business process diagram (or flow chart or UML
Activity) do not require the addition of specialized elements
in the model presented here. This means that one will not find
a “decision' or “merge” model element yet if the diagram
above were taken as input. However, it is a relatively easy
operation to map from the process elements to the patterns
described in the following text.

US 2008/0259930 A1

0089 First, look at the initial decision point. In most pro
cess notations this element has a single input flow, an evalu
ation expression and two or more exclusive flows leaving it.
This is shown in the example with “OK'?” as the expression
and the value “1” guarding one outbound flow and the value
“2 guarding the other.
0090 The simplest mapping from this process element is
to introduce a new service that encapsulates the decision,
such as process element 1300 shown in FIG. 13. The service
specification has a single input with two or more outputs.
Note that the logical behavior has been expressed with imple
mentation connections (note the 'or' junction). This specifi
cation simply says that the input is connected to either one
output or the other in a mutually exclusive manner. The Ser
vice specification for this is shown below. The service itself
describes the actual decision expression as a message handler
for the input message. The action language introduced here is
described as:

specification Decision ...
message

input: in Input;
out1: Out Output:
out2: Out Output:

network
input to out1 or out2:

end;
service IsOK implements Decision ...
process

on input
if expression then

let Sout1 := ...
else

let Sout2 := ...
end;

0091. Following the decision, there are two mutually
exclusive tasks. These tasks could be on different services,
Such as the case where these are two operations on the same
service. The merge of these exclusive flows is effectively
shown as a reverse of the Decision node above. This corre
sponds to the following service specification (again using an
“or junction). Note that the types of the input flows and
output flows do not have to match; the message handler(s) for
the service can perform any necessary transformation.
0092. This corresponds to the following specification/ser
Vice for the merge.

specification Merge...
message

in1 : in Input;
in2: in Input;
output: Out Output;

network
in1 or in2 to output;

end;
Service Merged implements Merge...
process

on in1 or in2 to output
return message()

end;

0093. We have already seen parallel activities in previous
examples with the simple use of the “and” junction. This
implies that Some aspects of the system behavior are modeled
within the specifications (the merge, the join) and some by the

Oct. 23, 2008

way in which these services are connected by the enclosing
service. The joining of parallel paths is more complex, in the
simplest case a junction can be used to join the paths back
together. Unfortunately this use of the “and” junction has a
very particular meaning which may not be appropriate in
many cases; this is best explained using the following
example shown in FIG. 14. The type of the message named
Order has to contain one top-level element for each of the
messages input to the join. Thus, the join will wait for one
Header and one Body to arrive and then send the following
message to the PostOrder service.

<Orders
<Headers...</Headers
<Body>.</Bodys

</Orders

0094. Two cases therefore exist where this default behav
ior of a junction may be inappropriate.
(0095. The flow shown in FIG. 15 is therefore the complete
specification of the flow introduced herein.
0096. The preferred approach taken to create the network
model described herein is to keep the number of primitive
elements as Small as possible, providing additional capabili
ties as patterns. These patterns provide common functions
used in the connecting of services and the description of
behavior acting across services. On the other hand it can be
easier for the modeler to be able to distinguish when one of
these patterns has been consciously applied as opposed to the
case where services naturally end up looking like a decision
or a merge. In this case it may be appropriate to introduce
visually unique elements.

Action Language

0097. To describe the processing that occurs within a ser
Vice on the receipt of messages we need a language that
allows us to define such behavior. In the same way that the
structural aspects of the language leverage XML Schema for
message declarations and allow for the import of WSDL for
representation of specifications the action language has been
chosen from the XML family-XQuery.
0098. The first step in describing this behavior is to add a
process section to the service text. This section contains a
series of message handlers, which respond to the receipt of
input messages. Each message handler can respond to more
than one message, and each handler has an expression
describing the conditions under which it is executed. This
expression, or sensitivity list (using terminology from the
VHDL from which the textual syntax of the model has been
derived), can use the logical operators “and”, “or' and “not”.
The body of this message handler is expressed in XQuery.
(0099. The example shown in text below describes the
behavior of the AcceptOrder message handler for the Order
Processing service, such as shown in FIG. 16.

service OrderProcessing implements OP is
message

Validate : out Order:
Validation : in ValidationResp;

US 2008/0259930 A1

-continued

process
on AcceptOrder

let Stotal := SAcceptOrder/Header/Total
if Stotals 1000 then

let SValidate = $AcceptOrder
else

on Validation
if SValidation state = true() then

else
let SAcceptOrder := create decline order()

end;

0100 Interms of the XQuery embedded in the handler the
messages described in the sensitivity list are available within
the handler and act as module variables. However, input mes
sages are only read-only, and as demonstrated in the example
above, SAcceptOrder can be assigned from but not assigned
to. Conversely the output messages are write-only and can be
the target of a let statement as you can see with the SValidate
message above. However, in the case that a sensitivity list
contains an expression with more than one message, the han
dler can use the reserved variable "Smessage' to distinguish
which message(s) actually caused the handler to execute. This
variable will contain the name of the message which caused
the handler to execute.

Message Connector Characteristics

0101. As the model presented here is intended to be a
reasonable alternative to the reliance on WSDL to described
services, depending on the needs of the user, it must be able to
express at least the kinds of service interfaces commonly
developed today.
0102 For example, it is likely that a user would want to be
able to denote an input message as being reliably delivered
and queued on arrival. This is specified only on the input
message. Thus, the output message does not need to denote
these attributes, and therefore the attributes are not required to
validate the connection between sender and receiver. The
reason for this is that the middleware technology is expected
to negotiate this connection at runtime when the sender sends
an output message, thus allowing a sender to wire to a receiver
regardless of their requirements for delivery and with assur
ance that the message is being transmitted correctly.
0103) To this end it should be possible to extend the
description of message connectors with attributes that allow
declarative extensions. While this section of the language is
currently not completely defined an example approach would
be to use the attribute mechanism above, as shown here.

specification ApprovalRouter is
messages

queued, reliable NewOrder: in Order;
Approve : Out Order;
Escalate: out Order:

0104 Or, alternatively, inclusion of XML, allowing the
direct integration of existing specifications such as

Oct. 23, 2008

WS-Policy or WS-Security. This is a cumbersome approach
but would be entirely appropriate in an all-XML rendering of
the model.
0105. The diagrams shown in FIGS. 17 and 18 represent
the logical elements of the model described herein.
01.06 As shown in FIG. 17, a ServiceElement 1700
includes a message Handler 1702. When an event (such as a
“Service' request shown in FIG. 18 as “Service') occurs,
Handler 1702 implements a BodyExpression (shown in FIG.
18), which denotes that the Handler 1702 has finished han
dling incoming messages. Note that "Msg. is a type message
that is defined by a schema in a specification. Thus, when a
ServiceElement 1700 uses a Service, the Message and the
Wires 1706 used to communicate those messages are
recorded. Note that Handler 1702 may direct outgoing mes
sages to different ports 1708.
0107 Thus, presented herein are a method, system and
computer-readable medium for defining a message flow
model of interactions between distributed services. In a pre
ferred embodiment, the method includes the steps of captur
ing uni-directional network-level message traffic between
services in a network; identifying service end-points from
information obtained from the uni-directional network-level
message traffic; identifying message interactions of captured
unidirectional network-level message traffic between identi
fied service end-points; applying formal and informal inter
face definitions to the captured uni-directional network-level
message traffic; categorizing each captured uni-directional
network-level message traffic as being a public network-level
message traffic or a private network-level message traffic;
filtering the captured uni-directional network-level message
traffic to filter out any formally defined captured uni-direc
tional network-level message traffic; correlating message
exchanges for filtered uni-directional network-level message
traffic to identify a relationship between correlated message
exchanges; and analyzing the network according to identified
relationships between correlated message exchanges. Note
that utilizing only unidirectional network-level message traf
fic in the modeling described herein allows the network
analysis to isolate each message, thus permitting the message
flow analysis described herein.
0108. In one embodiment, the formal interface definitions
are described using Web Service Definition Language
(WSDL) resources for a given service end-point; and the
informal interface definitions are text-based documentation
of types of message traffic that are enabled for the service
end-point. The method may further include the step of, in
response to a set of messages failing to be correlated, defining
a relationship among the set of messages as being coinciden
tal. The uni-directional network-level message traffic may be
captured by a network Sniffer that is controlled by a network
analyzing service, wherein the network analyzing service is
exclusively devoted to analyzing the network. Furthermore,
at least one of the informal interface definitions may be based
on historical data that describes a second network message
responding to a first network message to a service end-point.
0109 While the present invention has been particularly
shown and described with reference to a preferred embodi
ment, it will be understood by those skilled in the art that
various changes in form and detail may be made therein
without departing from the spirit and scope of the invention.
Furthermore, as used in the specification and the appended
claims, the term “computer or “system” or “computer sys
tem” or “computing device' includes any data processing

US 2008/0259930 A1

system including, but not limited to, personal computers,
servers, workstations, network computers, main frame com
puters, routers, switches, Personal Digital Assistants (PDA's),
telephones, and any other system capable of processing,
transmitting, receiving, capturing and/or storing data.
What is claimed is:
1. A computer-implementable method for defining a mes

sage flow model of interactions between distributed services,
the method comprising:

capturing uni-directional network-level message traffic
between services in a network;

identifying service end-points from information obtained
from the uni-directional network-level message traffic;

identifying message interactions of captured uni-direc
tional network-level message traffic between identified
service end-points;

applying formal interface definitions and informal inter
face definitions to the captured uni-directional network
level message traffic;

categorizing each captured uni-directional network-level
message traffic as being either a public network-level
message traffic or a private network-level message traf
fic;

filtering the captured uni-directional network-level mes
sage traffic to filter out any formally defined captured
uni-directional network-level message traffic;

correlating message exchanges for filtered uni-directional
network-level message traffic to determine a relation
ship between correlated message exchanges; and

analyzing the network according to identified relationships
between correlated message exchanges.

2. The computer-implementable method of claim 1,
wherein the relationship between correlated message
exchanges is determined to be only one relationship from a
group consisting of causation, correlation and coincidence.

3. The computer-implementable method of claim 1,
wherein the formal interface definitions are described using
Web Service Definition Language (WSDL) resources for a
given service end-point.

4. The computer-implementable method of claim 1,
wherein the informal interface definitions are text-based
documentation of types of message traffic that are enabled for
the service end-point.

5. The computer-implementable method of claim 1, further
comprising:

in response to a set of messages failing to be correlated,
defining a relationship among the set of messages as
being coincidental.

6. The computer-implementable method of claim 1,
wherein the uni-directional network-level message traffic is
captured by a network sniffer that is controlled by a network
analyzing service, wherein the network analyzing service is
exclusively devoted to analyzing the network.

7. The computer-implementable method of claim 1,
wherein at least one of the informal interface definitions is
based on historical data that describes a second network mes
sage responding to a first network message to a service end
point.

8. The computer-implementable method of claim 1,
wherein the network is a service network, and wherein the
steps of claim 1 create a model that captures elements of the
service network, the identified service end-points, the uni
directional network-level message traffic and message depen
dencies.

Oct. 23, 2008

9. The computer-implementable method of claim 8.
wherein the model is augmented with knowledge gained from
formal resources, informal resources and user experience to
describe a manner in which messages in the network service
are related.

10. The computer-implementable method of claim 8.
wherein the model includes handler logic descriptions that
describe how a service manipulates and responds to messages
received.

11. A system comprising:
a processor;
a data bus coupled to the processor,
a memory coupled to the data bus; and
a computer-usable medium embodying computer program

code, the computer program code comprising instruc
tions executable by the processor and configured for:

capturing unidirectional network-level message traffic
between services in a network;

identifying service end-points from information obtained
from the unidirectional network-level message traffic;

identifying message interactions of captured uni-direc
tional network-level message traffic between identified
service end-points;

applying formal and informal interface definitions to the
captured uni-directional network-level message traffic;

categorizing each captured unidirectional network-level
message traffic as being a public network-level message
traffic or a private network-level message traffic;

filtering the captured uni-directional network-level mes
sage traffic to filter out any formally defined captured
unidirectional network-level message traffic;

correlating message exchanges for filtered uni-directional
network-level message traffic to identify a relationship
between correlated message exchanges; and

analyzing the network according to identified relationships
between correlated message exchanges.

12. The system of claim 11, wherein the formal interface
definitions are described using Web Service Definition Lan
guage (WSDL) resources for a given service end-point.

13. A computer-usable medium embodying computer pro
gram code, the computer program code comprising computer
executable instructions configured for:

capturing uni-directional network-level message traffic
between services in a network;

identifying service end-points from information obtained
from the uni-directional network-level message traffic;

identifying message interactions of captured unidirec
tional network-level message traffic between identified
service end-points;

applying formal and informal interface definitions to the
captured unidirectional network-level message traffic;

categorizing each captured uni-directional network-level
message traffic as being a public network-level message
traffic or a private network-level message traffic;

filtering the captured uni-directional network-level mes
sage traffic to filter out any formally defined captured
unidirectional network-level message traffic;

correlating message exchanges for filtered uni-directional
network-level message traffic to identify a relationship
between correlated message exchanges; and

analyzing the network according to identified relationships
between correlated message exchanges.

US 2008/0259930 A1

14. The computer-usable medium of claim 13, wherein the
formal interface definitions are described using Web Service
Definition Language (WSDL) resources for a given service
end-point.

15. The computer-usable medium of claim 13, wherein the
informal interface definitions are text-based documentation
of types of message traffic that are enabled for the service
end-point.

16. The computer-implementable method of claim 1,
wherein the instructions are further configured for:

in response to a set of messages failing to be correlated,
defining a relationship among the set of messages as
being coincidental.

17. The computer-usable medium of claim 13, wherein the
uni-directional network-level message traffic is captured by a

Oct. 23, 2008

network Sniffer that is controlled by a network analyzing
service, wherein the network analyzing service is exclusively
devoted to analyzing the network.

18. The computer-usable medium of claim 13, wherein at
least one of the informal interface definitions is based on
historical data that describes a second network message
responding to a first network message to a service end-point.

19. The computer-useable medium of claim 13, wherein
the computer executable instructions are deployable to a cli
ent computer from a server at a remote location.

20. The computer-useable medium of claim 13, wherein
the computer executable instructions are provided by a ser
Vice provider to a customer on an on-demand basis.

c c c c c

