
US008255394B2

(12) United States Patent (10) Patent No.: US 8.255,394 B2
Branigan et al. (45) Date of Patent: Aug. 28, 2012

(54) APPARATUS, SYSTEM, AND METHOD FOR 2005/0228791 A1* 10/2005 Thusoo et al. 707/6
2006.0053122 A1*
2008/0097.959 A1*

* cited by examiner

3/2006 Kornet al. 7O7/1OO
4/2008 Chen et al. 707/2

EFFICIENT CONTENT INDEXING OF
STREAMING XML DOCUMENT CONTENT

(75) Inventors: James P. Branigan, Durham, NC (US);
David P. Charboneau, Durham, NC
(US); Simon K. Johnston, Durham, NC
(US) Assistant Examiner — Muluemebet Gurmu

Primary Examiner — Tony Mahmoudi

(74) Attorney, Agent, or Firm — Kunzler Needham Massey (73) Assignee: International Business Machines & Thorpe Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 344 days.

(57) ABSTRACT

An apparatus, system, and method are disclosed for efficient
content indexing of streaming XML document content. A 21) A1. No.: 12/475.999 (21) Appl. No 9 forest generator generates an XML pattern forest from a set of

(22) Filed: Jun. 1, 2009 structured index path expressions, the XML pattern forest
includes trees and twigs generated from structured indeX path

(65) Prior Publication Data expressions uniquely associated with a namespace indicator
US 2010/0306273 A1 Dec. 2, 2010 for an XML node. The XML node is identified in a stream of

s at least one XML document. A comparison module compares
(51) Int. Cl. the XML node to nodes of trees and twigs of the XML pattern

G06F 7/30 (2006.01) forest. A determination module determines a match between

(52) U.S. Cl. ... 707/726 the XML node and an index node in one of a tree and a twig
(58) Field of Classification Search 707/E17.123, of the XML pattern forest. The index node has a path from an

707/726
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

ancestor node to the index node that matches the axis steps of
at least one of the structured index path expressions. A storage
module stores an index entry for the XML node in response to
the determined match, the index entry includes a XML docu
ment identifier, an XML node name, a namespace indicator
for the XML node, and XML node content.

7,113,942 B2 * 9/2006 Levanoni et al. 1f1
2004/0268244 A1* 12/2004 Levanoni et al. 715,514
2005/0228768 A1* 10, 2005 Thusoo et al. 707/1 20 Claims, 5 Drawing Sheets

100

Storage Storage
Services Engine
102 104.

Storage
Repository

106

Document
Indexer
108

Query
Services
116

U.S. Patent Aug. 28, 2012 Sheet 1 of 5 US 8.255,394 B2

100

Storage Storage
Services Engine
102 104.

Storage
Repository

106

DOCument
Indexer
108

Query
Services
116

FIG. 1

U.S. Patent Aug. 28, 2012 Sheet 2 of 5

SCanner
210

Forest Generator
230

Determination
250

FIG. 2

ldentification
220

Comparison
240

Storage
260

US 8.255,394 B2

U.S. Patent Aug. 28, 2012 Sheet 3 of 5 US 8.255,394 B2

Comparison
340

Pruning
310

Forest Generator
330

Twig Generator Tree Generator
360 370

Completion
390

FIG. 3

U.S. Patent Aug. 28, 2012

Structured Index Path Expression
402

- - - - - - - -

ABIC / NS1 NS2
I/ABID
/AIB
AD/CIE

Sample XML Document
404

FIG. 4

Sheet 4 of 5 US 8.255,394 B2

XML Pattern FOrest

Streaming XML Document
408

...C, Z, Y,X, Y,X, D, B, B, A.

t"

U.S. Patent Aug. 28, 2012 Sheet 5 of 5 US 8.255,394 B2

500

510

Scan a streaming XML document

52O

ldentify XML node

530

Generate?modify XML Pattern forest based on Namespace

540
Compare XML node to Forest nodes

550

Yes
560

Store Index Entry

570

End Of
DOCument

Yes
580

Discard Forest

FIG. 5

US 8,255,394 B2
1.

APPARATUS, SYSTEM, AND METHOD FOR
EFFICIENT CONTENT INDEXING OF

STREAMING XML DOCUMENT CONTENT

BACKGROUND

1. Field of the Invention
This invention relates to content indexing of content in

streaming XML documents within a stream of one or more
XML documents.

2. Description of the Related Art
In processing XML or other forms of hierarchical data

including SGML, JSON, and the like different areas of opti
mization are developing. The first is dividing up of Extensible
Markup Language (XML) data in an XML document for
storage and later retrieval in a conventional relational hierar
chical such as XML databases, and/or hybrid database sys
tems. In this area, optimization focuses on storing parts of the
XML document to facilitate locating and retrieving the data
of the XML document. The second area focuses on optimiz
ing queries for XML data by re-writing the XML query and/or
adjusting query execution plans such that the data requested is
located and retrieved as efficiently as possible. A third area
seeks to optimize how an entire XML document can be
marked, tagged, or otherwise identified as having content that
will merit future retrieval of the entire XML document.
Operations in this third area may be referred to as subject
indexing, tagging, cataloging, indexing, content indexing (as
used herein), or search engine indexing of content in an XML
document. Such operations are distinct from creation and
maintenance of indexes in a database system.

Optimizations in relation to databases benefit from the
ability to expend time and overhead processing and manipu
lating an XML document or XML data query once in
exchange for optimization benefits over time due to the large
collection of documents and high query request rates. In
contrast, content indexing takes place during the update or
storage of an XML document and so the impact of content
indexing on performance should be minimal. Unfortunately,
convention solutions in the area of content indexing have used
XPATH processors that load the entire XML document into
memory as a Document Object Model (DOM). This requires
significant processing resources and delay waiting for the
DOM instance to be generated. Furthermore, the set of XML
documents that will be the subject of content indexing is
unknown and thus conventional techniques are unpredict
able. Typically, while the set of XML documents that will be
the Subject of content indexing is unknown it is known that the
XML documents are generally very large often many tens of
megabytes in size each. Consequently, the inefficient use of
memory and processing resources of conventional content
indexing Solutions have prompted a search for more efficient
Solutions.

BRIEF SUMMARY

From the foregoing discussion, it should be apparent that a
need exists for an apparatus, system, and method that opti
mally indexes XML document content. Beneficially, such an
apparatus, computer program product, system, and method
would efficiently use both processing resources as well a
memory resources to index content of streaming hierarchical
documents.
The present invention has been developed in response to

the present state of the art and in particular, in response to the
problems and needs in the art that have not yet been fully
Solved by currently available content indexing Solutions.

10

15

25

30

35

40

45

50

55

60

65

2
Accordingly, the present invention has been developed to
provide an apparatus, computer program product, System,
and method for content indexing of streaming Extensible
Markup Language (XML) document content that overcome
many or all of the above-discussed shortcomings in the art.
The computer program product for content indexing of

streaming XML document content is provided with a plural
ity of components and modules configured to functionally
execute the necessary steps of efficient content indexing.
These modules in the described embodiments include a scan
ner, an identification module, aforest generator, a comparison
module, a determination module, and a storage module.

In one embodiment, the Scanner is an optional component
that scans a streaming XML document in a stream of XML
documents. The streaming XML document is streamed in
document order according to XML tree traversal protocol. In
one embodiment, the identification module is an optional
component that identifies an XML node of the streaming
XML document. The XML node may include an XML docu
ment element node and/or an XML document element
attribute node.

In one embodiment, the forest generator generates an XML
pattern forest from a set of structured index path expressions.
Each set of structured indeX path expressions is uniquely
associated with a namespace indicator. Each structured index
path expression includes a series of one or more steps, each
step comprising an axis step and each step having a node test
and no predicates. The XML pattern forest comprising at least
one of a tree and a twig generated from one or more structured
index path expressions uniquely associated with a namespace
indicator for the XML node.

In certain embodiments, the forest generator includes a
read module that reads the set of structured index path expres
sions from a repository. The set of structured index path
expressions may be identified by way of the namespace indi
cator for the XML node.

In certain embodiments, the forest generator includes a
skip module that ignores each structured index path expres
sion having no descendent axis steps and each structured
index path expression having a first axis step that is different
from a root node of the streaming XML document. The forest
generator may also include a twig generator that defines a new
twig for each index path expression having a descendent-or
self axis for a first step, the new twig comprising nodes
representing the indeX path expression. The forest generator
may also include a tree generator configured to define a new
tree for each index path expression having a first axis step
different from a root of an existing tree in the XML pattern
forest, the new tree comprising nodes representing the index
path expression.

In one embodiment, the forest generator may also include
a grafting module configured to identify an existing tree in the
forest having a root node matching the first axis step of an
index path expression and appending a branch of nodes to the
existing tree. The branch of nodes corresponding to one or
more axis steps of the index path expression that differ from
nodes of the existing tree, the branch anchored at a node that
matches a last matching axis step of the index path expression
evaluated from left to right.

In one embodiment, the forest generator may also include
a completion module that identifies a second streaming XML
document in the stream of XML documents. The completion
module discards the XML pattern forest in response to iden
tifying the second streaming XML document.

In one embodiment, the comparison module compares the
XML node to nodes of the XML pattern forest. In certain
embodiments, the comparison module determines that the

US 8,255,394 B2
3

namespace indicator for the XML node is different from a
previously identified namespace indicator and causes the for
est generator to reference a second set of structured index path
expressions. The second set of structured index path expres
sions may be identified by way of the namespace indicator,
the forest generator may be further configured to modify the
XML pattern forest to include at least one of a tree and a twig
representative of the second set of structured index path
expressions and the set of structured indeX path expressions.
In one embodiment, the comparison module includes a prun
ing module configured to determine that the XML node is a
root node for the streaming XML document, and remove one
or more trees from the XML pattern forest having a root node
that does not match the XML node.

In one embodiment, the determination module determines
a match between the XML node and an index node in one of
a tree and a twig of the XML pattern forest, the index node
having a path from an ancestor node to the index node that
matches the axis steps of at least one of the structured index
path expressions for the namespace indicator.

In one embodiment, the storage module stores an index
entry for the XML node in response to the determined match.
The index entry comprises an XML document identifier, an
XML node name, a namespace indicator for the XML node,
and XML node content.

It should be noted that while the embodiments of the inven
tion described herein refer to Extensible Markup Language
(XML) nodes, XML data, streaming XML documents XML
documents, and XML content. Certain embodiments of the
present invention are not limited to handling XML structured
documents, nodes, and or content. Specifically, those of skill
in the art recognize that embodiments of the present invention
may operate on other forms of streaming hierarchical data
including, but not limited to Standard Generalized Markup
Language (SGML), JavaScript Object Notation (JSON).
Hypertext Markup Language (HTML), and the like.
A method, apparatus, and system are also provided for

efficient content indexing of streaming XML document con
tent each providing a plurality of components, modules, and
operations to functionally execute the necessary steps of effi
cient XML content indexing. The method, apparatus, and
system may also be configured to functionally perform the
necessary steps as described above in relation to the computer
program product. The computer program product may be
embodied as part of a SAX parser or as an add-on to a SAX
parser.

Reference throughout this specification to features, advan
tages, or similar language does not imply that all of the
features and advantages that may be realized with the present
invention should be or are in any single embodiment of the
invention. Rather, language referring to the features and
advantages is understood to mean that a specific feature,
advantage, or characteristic described in connection with an
embodiment is included in at least one embodiment of the
present invention. Thus, discussion of the features and advan
tages, and similar language, throughout this specification
may, but do not necessarily, refer to the same embodiment.

Furthermore, the described features, advantages, and char
acteristics of invention may be combined in any Suitable
manner in one or more embodiments. One skilled in the
relevant art will recognize that the invention may be practiced
without one or more of the specific features or advantages of
a particular embodiment. In other instances, additional fea
tures and advantages may be recognized in certain embodi
ments that may not be present in all embodiments of the
invention.

10

15

25

30

35

40

45

50

55

60

65

4
These features and advantages of the present invention will

become more fully apparent from the following description
and appended claims, or may be learned by the practice of the
invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of the invention will be readily
understood, a more particular description of the invention
briefly described above will be rendered by reference to spe
cific embodiments that are illustrated in the appended draw
ings. Understanding that these drawings depict only typical
embodiments of the invention and are not therefore to be
considered to be limiting of its scope, the invention will be
described and explained with additional specificity and detail
through the use of the accompanying drawings, in which:

FIG. 1 is a schematic block diagram illustrating one
embodiment of a system for efficient content indexing of
streaming XML document content in accordance with the
present invention;

FIG. 2 is a schematic block diagram illustrating one
embodiment of an apparatus for efficient content indexing of
streaming XML document content in accordance with the
present invention;

FIG. 3 is a schematic block diagram illustrating one
embodiment of a comparison module and a forest generator
for efficient content indexing of streaming XML document
content in accordance with the present invention;

FIG. 4 is a schematic block diagram illustrating exemplary
abstract representations of data structures and structured path
expressions and a sample XML document processed by one
embodiment of an apparatus for efficient content indexing of
streaming XML document content in accordance with the
present invention; and

FIG. 5 is a schematic flow chart diagram illustrating one
embodiment of a method for efficient content indexing of
streaming XML document content in accordance with the
present invention.

DETAILED DESCRIPTION

Many of the functional units described in this specification
have been labeled as modules, in order to more particularly
emphasize their implementation independence. For example,
a module may be implemented as a hardware circuit compris
ing custom VLSI circuits or gate arrays, off-the-shelf semi
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in program
mable hardware devices such as field programmable gate
arrays, programmable array logic, programmable logic
devices or the like.
Modules may also be implemented in software for execu

tion by various types of processors. An identified module of
executable code may, for instance, comprise one or more
physical or logical blocks of computer instructions which
may, for instance, be organized as an object, procedure, or
function. Nevertheless, the executables of an identified mod
ule need not be physically located together, but may comprise
disparate instructions stored in different locations which,
when joined logically together, comprise the module and
achieve the stated purpose for the module.

Indeed, a module of executable code may be a single
instruction, or many instructions, and may even be distributed
over several different code segments, among different pro
grams, and across several memory devices. Similarly, opera
tional data may be identified and illustrated herein within
modules, and may be embodied in any suitable form and

US 8,255,394 B2
5

organized within any Suitable type of data structure. The
operational data may be collected as a single data set, or may
be distributed over different locations including over different
storage devices, and may exist at least partially, merely as
electronic signals on a system or network. Where a module or
portions of a module are implemented in Software, the Soft
ware portions are stored on one or more computer readable
media.

Reference throughout this specification to “one embodi
ment,” “an embodiment, or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment, and
similar language throughout this specification may, but do not
necessarily, all refer to the same embodiment.

Reference to a computer readable storage medium may
take any form capable of storing machine-readable instruc
tions on a digital processing apparatus. A computer readable
medium may be embodied a compact disk, digital-Video disk,
a magnetic tape, a Bernoulli drive, a magnetic disk, a punch
card, flash memory, integrated circuits, or other digital pro
cessing apparatus memory device.

Furthermore, the described features, structures, or charac
teristics of the invention may be combined in any suitable
manner in one or more embodiments. In the following
description, numerous specific details are provided. Such as
examples of programming, Software modules, user selec
tions, network transactions, database queries, database struc
tures, hardware modules, hardware circuits, hardware chips,
etc., to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize,
however, that the invention may be practiced without one or
more of the specific details, or with other methods, compo
nents, materials, and so forth. In other instances, well-known
structures, materials, or operations are not shown or described
in detail to avoid obscuring aspects of the invention.
The schematic flow chart diagrams included herein are

generally set forth as logical flow chart diagrams. As such, the
depicted order and labeled steps are indicative of one embodi
ment of the presented method. Other steps and methods may
be conceived that are equivalent in function, logic, or effect to
one or more steps, or portions thereof, of the illustrated
method. Additionally, the format and symbols employed are
provided to explain the logical steps of the method and are
understood not to limit the scope of the method. Although
various arrow types and line types may be employed in the
flow chart diagrams, they are understood not to limit the scope
of the corresponding method. Indeed, some arrows or other
connectors may be used to indicate only the logical flow of the
method. For instance, an arrow may indicate a waiting or
monitoring period of unspecified duration between enumer
ated steps of the depicted method. Additionally, the order in
which a particular method occurs may or may not strictly
adhere to the order of the corresponding steps shown.

FIG. 1 illustrates one embodiment of a system 100 to for
efficient content indexing of streaming XML document con
tent. In general, the system 100 processes streaming XML
documents in order to extract content that satisfies previously
defined structured index path expressions. The system effi
ciently uses memory because each streaming XML document
is processed dynamically, or on-the-fly, such that the docu
ment object model (DOM) is not created in memory. The
system handles very large XML documents into streaming
fashion. The system avoids constant reevaluation of the struc
tured index path expressions. The system accepts and
matches structured index path expression of starting axis that

5

10

15

25

30

35

40

45

50

55

60

65

6
is a descendant or a descendent-or-self axis. In addition the
system accepts structured indeX path expressions that include
wild card steps.
The system 100 includes a storage services module 102, a

storage engine 104, a storage repository 106, a document
indexer 108, a content indexer 110, an expressions repository
112, an index store 114, and a query services module 116.
The storage services module 102 serves to store and

retrieve XML documents from the storage repository 106. A
hardware processor may execute the storage services module
102 within a computer readable storage medium. The storage
services module 102 differs from a database in that the stor
age services module 102 stores the XML documents intact,
meaning the structure of the XML document is preserved
once the XML document is stored in the storage repository
106. Users or other clients may send XML documents to the
storage services module 102 for storage and safe keeping.
The storage services module 102 passes the XML documents
to the storage engine 104 to store the XML document.
The storage engine 104 simply stores the XML document

while preserving the structural metadata defining the XML
document. In one embodiment, the storage engine 104 stores
the XML document as a Large Binary Object (BLOB) data
type. Alternatively, the storage engine 104 stores the XML
document in native text format.
The storage repository 106 serves to store the XML docu

ment in such a manner that the entire XML document can be
retrieved in response to a unique identifier associated with the
XML document. In one embodiment, the unique identifier is
a Uniform Resource Identifier (URI) such as a Uniform
Resource Locator (URL). The URL may serve to identify
where the associated XML document is stored in the storage
repository 106. The storage repository 106 may be imple
mented using a file system, a web server, a database or the
like. Those of skill in the art will recognize that while the
storage repository 106, storage engine and storage services
module 102 may be embodied by a database, such a database
would not include or utilize the complex indexes and optimi
Zation functionality of such a database. Except to identify and
stream new or updated XML documents to the document
indexer 108.

In one embodiment, the storage engine 104 does not do any
parsing or processing of the XML document unless the XML
document is a new XML document that has not previously
been stored in the repository 106 or is an XML document that
updates a previously stored XML document. If the XML
document is a new XML document or an update for an exist
ing XML document, the storage engine 104 streams the XML
document to the document indexer 108. In one embodiment,
the storage engine 104 comprises a Simple API for XML
(SAX) module that is a serial access parser Application Pro
gramming Interface (API) for XML. Advantageously, the
SAX module parses the XML document and creates a stream
of data nodes representative of the XML document. The
document indexer 108 then listens for specific types of nodes
as the SAX module streams the XML document.
The document indexer 108 serves to collect, parse and store

data for fast retrieval from a structured, but undefined set of
documents such as a set of XML documents, HMTL docu
ments, or the like. A document indexer 108 may also be
referred to as a web crawler, web indexer, a search engine
indexer, and the like.
The document indexer 108 serves to identify nodes in an

XML document that match previously defined structured
index path expressions 118. In one embodiment, the struc
tured index path expressions 118 are stored in an expression
repository 112. In one embodiment, the expression repository

US 8,255,394 B2
7

112 comprises a data structure Such as a data file, a database,
or the like and may be stored in persistent storage such as on
a disk drive or other form of persistent data storage device. In
certain embodiments, the expression repository 112 comprise
a cache of efficient and fast memory that is loaded and
updated as needed with structured index path expressions 118
from a more persistent memory storage device, or a combi
nation of persistent and non-persistent memory devices.
As used herein, the term “structured index path expres

sions” refers to a pre-defined XML node and/or content
value(s) including XML nodes content and XML attribute
content that is to be identified and extracted from an arbitrary
and unknown set of XML documents if that XML node and/or
content value(s) occurs in the set of XML documents. Struc
tured index path expressions 118 are described and explained
in more detail in relation to FIG. 4. It should be noted that a
structured index path expressions 118 differs from a database
query because at the time the structured index path expres
sions 118 is defined the set of XML documents that may or
may not include the XML node and/or content value(s) is
arbitrary and unknown. While a database query may return no
results, the structure of the database (its tables, indexes, and
the like) are well defined and known before the query is
formed.

Because the size of XML documents and number of XML
documents in the set of XML documents that the document
indexer 108 processes is unknown, the document indexer 108
preferably uses a minimal amount of memory and processes
each XML document as quickly as possible. To satisfy these
constraints, the document indexer 108 operates on a stream
120 of one or more XML documents. The document indexer
108 sends this stream 120 of XML documents to a content
indexer 110. The content indexer 110 listens for particular
types of data to pass by in the stream of XML documents.
When a particular type of data as indicated by the content
indexer 110 comes along in the stream 120, the document
indexer 108 signals the content indexer 110. All other data in
the stream 120 that is not of interest to the content indexer 110
simply passes through the stream 120 and is ignored by the
content indexer 110. In this manner, a minimal amount of
memory is used and the XML documents can be of any size
and the stream can have an unlimited number of XML docu
ments without impacting the performance of the document
indexer 108.
The content indexer 110 seeks to match content and/or

document structure in the XML stream 120 with one or more
structured index path expressions 118. If a match is found, the
content indexer 110 stores an index entry 122 in the index
store 114. The match provides an indicator that the content
described in the matching structured index path expressions
118 can be found in the XML document that included a data
node that satisfied the structured index path expressions 118.
The content indexer 110 the watches for particular types of
data to occur in the stream of XML documents. In one
embodiment, the content indexer 110 watches for XML
nodes that are one of XML document element nodes and/or
XML document element attribute nodes.

The index entry 122 serves to identify the XML document
that matched an existing structured indeX path expression
118. The form and structure of the index entry 122 may vary
So long as the index entry 122 includes a unique identifier of
the corresponding XML document. In one embodiment, the
index entry 122 comprises an XML document identifier, an
XML node name for the XML node that satisfied a structured
index path expression 118, a namespace indicator for the
XML node and the content or value contained within the
XML node. The unique identifier for the corresponding XML

5

10

15

25

30

35

40

45

50

55

60

65

8
document may comprise a single element of the index entry
122 or a composite of multiple elements of the index entry
122.

In one embodiment, the index store 114 comprises a data
structure Such as a data file, a database, or the like and may be
stored in persistent storage such as on a disk drive or other
form of persistent data storage device. The index store 114
interfaces with the query services module 116.
The query services module 116 accepts queries from a user

or client for index entries 122 that satisfy the query. The query
services module 116 searches the index store 114 for one or
more index entries 122 that match the provided query. If a
match is found, in one embodiment, the matching index
entries 122 are returned. In an alternative, embodiment, a
unique XML document identifier is returned for each match
ing index entry 122. The client or user may then use the
unique XML document identifier to retrieve the correspond
ing XML document if desired. For example, the user/client
may send a request for a corresponding XML document to the
storage services module 102. In this manner, the system 100
provides a very efficient and fast indexing system for a set of
XML documents having an undefined number of XML docu
ments and undefined size of each XML document based on
structured index path expressions 118.

FIG. 2 illustrates an apparatus 200 for efficient content
indexing of streaming XML document content. In one
embodiment, the apparatus 200 serves as the content indexer
110 described in relation to FIG. 1. The Apparatus 200
includes a scanner 210, an identification module 220, a forest
generator 230, a comparison module 240, a determination
module 250, and a storage module 260.
The scanner 210 serves as an optional component that may

be included in certain embodiments and may not be included
in other embodiments. The Scanner 210 scans a streaming
XML document in a stream 120 of XML documents. The
streaming XML document flows through the stream in docu
ment order in accordance with the XML tree traversal proto
col. An XML document is a hierarchical structure that
includes a root node at the top and Zero or more levels of
children of the root node. Each node in the XML document
may include child nodes.
Document order in the XML tree traversal protocol means

that the root node is first in the order, each node is processed
before all of its children and descendants, attribute nodes
immediately follow the element node they are associated
with, sibling nodes are ordered in the order in which they
occur in a children property of their parent node, and children
and descendants occur before following sibling nodes.
Streaming the XML document in document order permits the
apparatus 200 to implement efficiency improvements
because the order of each XML document is set.
The identification module 220 serves as an optional com

ponent that may be included in certain embodiments and may
not be included in other embodiments. The identification
module 220 identifies an XML node of the streaming XML
document that may include content that matches one or more
of the structured index path expression 118. In a particular
embodiment, the identification module 220 identifies XML
nodes that have a type of either XML document element node
or XML document element attribute node. As is known in the
art, XML documents may include a variety of types of XML
nodes including comment nodes, text nodes, namespace
nodes, and processing instructions nodes. By identifying just
XML document element nodes and or XML document ele
ment attribute nodes, the identification module 220 ignores
the other XML node types which improves the efficiency of
the apparatus 200.

US 8,255,394 B2

In one embodiment, the identification module 220 is inte
grated with or operates in conjunction with a SAX parser. The
identification module 220 may register one or more XML
node types for the SAX parser to watch for in the XML
document stream. Once the SAX parser locates an XML node
of the type registered, the SAX parser may signal the identi
fication module 220 which may optionally then signal the
forest generator 230 and/or the comparison module 240.
The forest generator 230 generates an XML pattern forest

from a set of structured index path expressions 118. The XML
pattern forest facilitates matching of structured indeX path
expressions 118 to XML nodes in the streaming XML docu
ment while minimizing or eliminating the need to evaluate
and/or reevaluate the structured index path expressions 118 as
each XML node i located. The XML pattern forest is a data
structure having Zero or more hierarchical tree structures and
Zero or more hierarchical twigs. The XML pattern forest
generates a twig and/or a tree for each structured index path
expressions 118 in a set of structured index path expressions
118. Each member of the set of structured index path expres
sions 118 is associated with a namespace by a unique
namespace indicator. Each XML node in the streamed XML
document is associated with a namespace indicator. An XML
pattern forest is described in more detail below in relation to
FIGS. 3 and 4.
The comparison module 240 compares the XML node

identified by the identification module 220 to nodes within
the XML pattern forest. In certain embodiments, the compari
son module 240 tracks where the XML node partially
matches a tree of the XML pattern forest as the XML docu
ment passes by in the stream. By tracking the partial matches
within one or more trees and/or one or more twigs of the
forest, the comparison module 240 maintains a context for
determining whether the particular XML node in the stream
120 may match one or more of the structured index path
expressions 118.
The determination module 250 determines a match

between the XML node and an index node in either a tree
and/or a twig of the XML pattern forest. In one embodiment,
the determination module 250 examines the current XML
node and nodes of one or more of the trees and/or twigs of the
XML pattern forest in order to determine that the XML node
matches an index node of either a tree and/or a twig of the
XML pattern forest. An index node is a node of a tree or a twig
of that XML pattern forest that has a path from an ancestor
node in the tree or twig to the index node that matches the axis
steps of at least one of the structured index path expressions
118 for a specific namespace identified by a unique
namespace indicator. Each node of the at least one tree and/or
at least one twig is associated with a unique namespace indi
cator. Each tree may comprise index nodes from a plurality of
namespaces.
The storage module 260 stores an index entry 122 built

from the XML node in response to the determination module
250 finding a match between the XML node and at least one
index node of the XML pattern forest. In one embodiment, the
index entry 122 comprises an XML document identifier such
as a URL or URI, an XML node name for the XML node, a
namespace indicator for the XML node and the content or
value contained within the XML node. Alternatively, the
index entry may include just the XML document identifier so
long as the XML document identifier uniquely identifies the
XML document. In another embodiment, the index entry 122
comprises an XML document identifier, composite field of
the XML node name and the namespace indicator for the
XML node, and the content or value contained within the
XML node.

10

15

25

30

35

40

45

50

55

60

65

10
FIG.3 illustrates one embodiment of a comparison module

340 in accordance with one embodiment of the present inven
tion. Advantageously, the present invention is configured to
index content in streaming XML documents in which the
XML documents include XML nodes associated with two or
more different namespaces. Consequently, the present inven
tion is configured to keep track of the different namespaces
associated with the XML nodes in a streaming XML docu
ment.

For example, in one embodiment, the comparison module
240 may maintain a listing of each unique namespace for the
XML nodes that are compared in a given XML document.
The comparison module 340 may determine whether the
namespace indicator of an XML node currently being com
pared includes a namespace indicator that is different from a
previously identified namespace indicator. If the XML node
includes a namespace indicator that has not yet been previ
ously identified for this XML document, the comparison
module may signal the forest generator 230 to reference a
second set of structured index path expressions 118.

This second set of structured index path expressions 118 is
uniquely associated with the namespace indicator that has not
previously been identified for this XML document. In
response to the signal from the comparison module 340, the
forest generator 230/330 may modify the XML pattern forest
to include at least one of a tree and/or a twig that represents the
second set of structured index path expressions 118. In this
manner, the XML pattern forest now represents the structured
index path expressions 118 for each previously identified
namespace indicator as well as for the namespace indicator of
the XML node currently being compared.

In addition or alternatively, the comparison module 340
may include a pruning module 310. The comparison module
340 may activate the pruning module 310 if the present inven
tion has previously identified the root node of the streaming
XML document. If the root node is not the same as the current
XML node being compared, then any tree in the XML pattern
forest having a root node that is not the same as the root node
of the streaming XML document will never match any other
XML node in the streaming XML document.

Consequently, in certain embodiments, in order to further
increase efficiency, the pruning module 310 may delete or
remove eachtree in the XML pattern forest having a root node
that is different from the root node for the streaming XML
document. Removing the trees that will never match descen
dent of XML nodes of the current streaming XML document
reduces the number of nodes the comparison module must
search for subsequent XML nodes of the streaming XML
document.

FIG.3 illustrates one embodiment of a forest generator 330
in accordance with one embodiment of the present invention.
The forest generator 330 includes a read module 320, a skip
module 350, a twig generator 360, tree generator 370, in
drafting module 380, and a completion module 390.
The read module 320 reads a set of structured index path

expressions 118 from a repository. In one embodiment, the
repository is a structured indeX path expression repository
112. Alternatively, the structured index path expression
repository is a dedicated portion of non-persistent memory, a
file data structure, a cache, or the like. The set of index path
expressions 118 are uniquely associated with a particular
namespace. That namespace is represented by a specific
namespace indicator. In certain embodiments, the forest gen
erator 330 activates the read module 320 to reference or read
a set of structured index path expressions 118 for each
namespace indicator. As noted above, each XML node may
be associated with a different namespace as defined by its

US 8,255,394 B2
11

namespace indicator. Associating each set of structured index
path expressions 118 with a particular namespace indicator
provides flexibility in defining structured index path expres
sions 118 since a set of particular structured index path
expressions 118 can be defined for each namespace indicator.
The skip module 350 identifies structured index path

expressions 118 that should not be added to the XML pattern
forest. Typically, the index path expressions 118 that should
not be added are those which had no further information
beyond what is already represented. Or, the index path
expressions 118 represent a match that not possible with the
current a streaming XML document. In one embodiment, the
skip module 350 ignores each index path expression 118 that
has no descendent axis steps. In addition, the skip module 350
eight north each index path expression 118 having a first axis
step that is different from a root node of the current streaming
XML document. As used herein the term "skip' and “ignore”
refer to the act of reviewing and the index path expression 118
and determining to make no additions to the XML pattern
forest to represent that index path expression 118.
The twig generator 360 defines a new twig in the XML

pattern forest for each index path expression 118that includes
a descendant-or-self axis for a first step. A descendant-or-self
axis is typically represented by the abbreviation"/7”. A twig is
a special form of a hierarchical structure. The twig does not
include a particular root node limitation. Instead, a branch of
a hierarchical structure can match the twig so long as each
step of the branch matches each descendent node of the twig
below the descendant-or-self axis. Twigs are described in
more detail in relation to FIG. 4.
The tree generator 370 defines a new tree in the XML

pattern forest for each index path expression 118that includes
a first axis step different from a root node of an existing tree
in the XML pattern forest. A tree is a hierarchical structure
having a root node and descendent nodes that follow the
similar structural limitations to an XML document. Trees are
described in more detail in relation to FIG. 4.
The grafting module 380 identifies an existing tree in the

forest having a root node matching the first axis step of an
index path expression 118. The grafting module 380 evalu
ates the index path expression 118 from left to right. The
grafting module 380 appends a branch of nodes representing
the index path expression 118 to the existing tree. Each node
of the branch corresponds to an axis step of the indeX path
expression that differ from nodes already present in the exist
ing tree. The branch is anchored, or connected to the existing
tree at a node that matches a last matching axis step of the
index path expression 118 when the index path expression
118 is evaluated from left to right.
The read module 320, skip module 350, twig generator

360, tree generator 370, and grafting module 380 cooperate to
augment or shrink the XML pattern forest as XML nodes of a
streaming XML document are processed. Advantageously
the forest generator 330 is capable of handling XML nodes
from a plurality of namespaces.

Optionally, the forest generator 330 also includes a
completion module 390. The completion module 390 identi
fies a second streaming XML document in the stream of XML
documents. For example, in one embodiment, the completion
module 390 identifies a second streaming XML document by
identifying a close tag a first streaming XML document. In
addition, the completion module 390 may discard, delete, or
remove the XML pattern forest as a result of identifying the
second streaming XML document. In one embodiment, the
completion module 390 discard the XML pattern forest by
deleting each tree and each twig in the pattern forest. In
addition, the completion module 390 may reset a list of iden

10

15

25

30

35

40

45

50

55

60

65

12
tified namespaces such that a new XML pattern forest can be
generated for the second streaming XML document.

FIG. 4 illustrates exemplary abstract representations of
data structures, a sample set of structured path expressions,
and a sample XML document processed by one embodiment
of an apparatus for efficient content indexing of streaming
XML document contentinaccordance with the present inven
tion. The apparatus may comprise the apparatus 200 of FIG.
2, the content indexer 110 of FIG. 1, or another embodiment
of the present invention.
The example set forth in FIG. 4 includes a collection 402 of

sets of structured index path expressions 118, a sample XML
document 404 illustrated for discussion purposes, an illus
trated representation of an XML pattern forest 406, and an
illustrated representation of a streaming XML document 408
that indicates nodes identified during the processing of the
sample XML document 404.
The collection 402 includes sets of structured index path

expressions 118 includes one or more sets of structured index
path expressions 118. Each structured indeX path expression
118 is defined previously by a client or user. The client or user
may be an administrator or other user who has determine an
attribute value, node characteristic, node name, or set of
nodes relative to an ancestor node or even a set of wild card
nodes (“*”) that make the associated XML document that
includes those nodes of interest for identifying and indexing
or cataloging in an index store 114.
A structured index path expression 118 is similar in struc

ture and format to an XML path language (XPATH) expres
sion with certain constraints. First, a structured indeX path
expression 118 includes no predicates in the axis steps that
define the structured index path expression 118. Second, axis
steps of the structured index path expression 118 include
exclusively a node test. Consequently, a structured indeX path
expression as used herein is a series of one or more steps, each
step comprising an axis step having a node test and no predi
cates. In addition, a structured index path expression may
start with a descendent or descendent-or-self axis but can then
only be followed by a descendent or attribute axis. With the
given definition of structured index path expressions 118, a
very robust set of expression can be defined in order to iden
tify both nodes and attributes of interest in a given XML
document.

Examples of both valid and invalid structured index path
expressions 118 include, “/Glossary” valid, “/Glossary/
name' valid, “/Glossary/*/name' valid, “/*/*' valid,
“//term/name valid, “//term(a)name' valid, “/term//
name' invalid, because descendent-or-self axis is only
allowed as a first step, “term/name' invalid, because struc
tured index path expressions may not be relative.
The collection 402 illustrates two sets of structured index

path expressions 118. Of course, the collection 402 can
include one or more sets, those of skill in the art recognize that
two sets are illustrated here for the example. Each set of
structured indeX path expressions 118 is uniquely associated
with a namespace represented by a namespace indicator. In
the collection 402, the example namespace indicators are
“NS1, and “NS2.
The sample XML document 404 includes ten nodes, the

root node is A. Suppose the sample XML document 404 has
a unique document identifier "http-www.example.
com\Sample.xml. Nodes B, D, X,Y,X are descendent nodes
and nodes B, Y. Z, and C are leafnodes and descendent nodes.
As explained above, the embodiments of the present inven
tion does not read the whole sample XML document 404 into
memory as in the DOM model. Instead, the embodiments of
the present invention operate on the nodes of the sample XML

US 8,255,394 B2
13

document 404 as they stream past in a stream of XML docu
ments 408. Examining nodes in the stream of XML docu
ments 408 saves memory as the XML documents streamed
may be very large and require significant memory and pro
cessing overhead if the XML documents were to be com
pletely represented in memory before being analyzed. Those
of skill in the art recognize that certain embodiments of the
invention may watch the stream 408 for other types of XML
nodes such as text nodes, and/or comment nodes. In the
stream of XML documents, the sample XML document 408
is represented with each listed in document order from the
root down in the stream reading from right to left.

Operation of one embodiment such as the apparatus 200 of
FIG. 2 by way of illustration is now described. Initially, the
sets of structured index path expressions 118 are defined and
made accessible to the forest generator 230. Next, a scanner
210 streams the sample XML document 404 to generate the
streaming XML document 408. The identification module
220 watches the stream 408 for nodes of interest. In this
example, the nodes of interest are XML document element
nodes and XML document element attribute nodes.
Those of skill in the art will recognize that the sample XML

document 404 and thus, the streaming XML document 408
may include nodes that are not of the type XML document
element node and/or XML document element attribute node.
For example, the sample XML document 404 and corre
sponding streaming XML document 408 may include text
nodes, comment nodes and the like. Examples of Such nodes
in the sample XML document 404 have not been included for
clarity of the example.

Arrow N1 represents the identification by the identification
module 220 of XML element node A. In one embodiment, the
identification module 220 sends node A to the forest genera
tor 230. The identification module 220 or the forest generator
230 may identify the namespace indicator for node A. Sup
pose the namespace indicator is “NS1.
The forest generator 230 generates as much of the XML

pattern forest 406 as possible based on the structured index
path expressions 118 associated with NS1, see collection 402.
Here, there are four structured index path expressions 118.
Those of skill in the art recognize that any number of struc
tured index path expressions 118 may be associated with a
namespace indicator.
The forest generator 230 evaluates each structured index

path expression 118 in turn. Evaluation of"/A/B/C results in
the left-most branch of the tree 410. Evaluation of “/A/B/D’
results in a grafting into the tree 410 of the left-most D leaf
node.

Evaluation of “/A/B” results in the marking of the B node
as an index node. An index node is a node of an XML pattern
forest tree or twig that has a path from an ancestor node to the
index node that matches the axis steps of at least one of the
structured indeX path expressions for the namespace indica
tor. Evaluation of"/A/D/C/E results in a grafting into the tree
410 of the right branch D-C-E below the root A. Nodes in the
forest 406 that are index nodes are illustrated by the stippled
background for the node. In the XML pattern forest 406 nodes
B, C, D, E, Y, Z, and Y are each index nodes.

Next, the comparison module 240 compares node A to the
nodes of the pattern forest and finds a match at the root of tree
410. However, because root node A is not an index node no
match is identified by the determination module 250. The
apparatus 200 then waits for the next node of interest to come
by in the stream 408.

Next, the identification module 220 sends node B (arrow
N2) to the forest generator 230. Suppose node B has the same
namespace NS1 and content value of “B is for Boy’ and

10

15

25

30

35

40

45

50

55

60

65

14
further suppose that nodes A, B, B, D, C of the streaming
XML document 408 also are in namespace NS1. The forest
generator 230 determines that no adjustments to trees or twigs
of the forest 406 are needed.
The comparison module 240 compares node B to the nodes

of the pattern forest and the determination module 250 finds
a match at the left-most B node of tree 410. Because node B
is an indeX node, the comparison module 240 identifies node
B as a match and signals the storage module 260 to store an
index entry 122 for node B. The index entry 122 includes an
XML document identifier, an XML node name, a namespace
indicator, and XML node content. In the example, of FIG. 4.
the index entry 122 may be (“http:\\www.example.
com\Sample.xml.” “B,” “NS1,” “B is for Boy”). The appara
tus 200 then waits for the next node of interest to come by in
the stream 408.

Those of skill in the art will recognize different techniques
for the determination module 250 to determine whether an
XML node matches one or more of a tree and/or a twig of the
XML pattern forest 406. For example, the determination
module 250 may maintain a set of hierarchical structures such
as software objects that represent the trees and/or twigs of the
forest 406. The determination module 250 may manage
pointers that indicate which node in each tree and/or twig the
last processed XML node of the streaming XML document
matched, even if the match did not result in creation of an
index entry 122. These pointers may serve as a context in
relation to the XML pattern forest 406.

Alternatively, or in addition, rather than maintaining tree
objects in memory and associated pointers, the determination
module 250 may simply maintain a list of trees and a list of
twigs in the forest 406. Each list includes nodes of the forest
and each node identifies its child nodes as well as a flag
indicating if that node is an indeX node. The determination
module 250 may also maintain a listing of Stack of previous
partial matches between a XML node of the XML document
and a node of a tree or twig, even if the partial match did not
result in creation of an index entry 122.
The set of partial matches serves as a context in relation to

the XML pattern forest 406. For a subsequent XML node
from the XML document, if the determination module 250
determines the subsequent XML node is a child of a member
of the partial matches, the determination module 250 has
located another partial match that extends further down into a
tree or twig of the forest. In addition, if the child of a partial
match matches the subsequent XML node and the child nodes
is also an index node, then the determination module 250 has
found a complete match and an index entry 122 can be gen
erated.

In one embodiment, the determination module 250 oper
ates using partial matches as a context with the understanding
that if the context is null the matching operation has not been
previously called and that matching should start with the root
nodes in the trees list. If the context is not null the determi
nation module 250 recognizes that the context is not null and
includes the last set of partial match as a result of a previous
call to the determination module 250.

Next, the identification module 220 sends node B (arrow
N3) to the forest generator 230 (or signals the forest generator
230 to examine node B). The forest generator 230 makes no
changes because the namespace is the same and has been
already used to populate the forest 406. The comparison
module 240 compares node B to the nodes of the pattern
forest 406 and finds no match for /A/B/B. The apparatus 200
then waits for the next node of interest to come by in the
stream 408.

US 8,255,394 B2
15

Next, the identification module 220 sends node D (arrow
N4) to the forest generator 230. The forest generator 230
makes no changes because the namespace is the same and has
been already used to populate the forest 406. The comparison
module 240 compares node D to the nodes of the pattern
forest 406 and finds a match for /A/B/D because the left-most
D node is an index node. The comparison module 240 may
signal the storage module 260 to store an index entry 122 for
node D, such as for example, ("http:\\www.example.
com\Sample.xml,” “D,” “NS1,” “D is for Doll'). The appa
ratus 200 then waits for the next node of interest to come by
in the stream 408.

Next, the identification module 220 sends node X (arrow
N5) to the forest generator 230. Suppose that nodes X, Y, X,
Y. and Z of the XML document 404 are each for namespace
“NS2. In one embodiment, the comparison module 240 of
the apparatus 200 determines that the namespace of node X is
different from the previously identified namespace “NS1.”
Consequently, the comparison module 240 may signal or
otherwise case the forest generator 230 to reference, read,
load, and/or retrieve a second set of structured indeX path
expressions 118. As illustrated in this example, the second set
of structured index path expressions 118 may comprise all
those expressions associated with namespace “NS2’ includ
ing /X/Y, /X/Z, and//X/Y. Next, the forest generator 230 may
modify the XML pattern forest 406 to include at least one of
a tree and a twig that represents each structured index path
expressions 118 in the second set of structured index path
expressions 118.

In this example, this means that the forest generator 230
may generate the new tree rooted at X node having descen
dent nodes Y and Z that are index nodes. In addition, the forest
generator 230 may generate a twig data structure comprising
X as the top node with the descendent index nodeY. It should
be noted that the relative descendent-or-self structured index
path expression 118''//X/Y is not rooted in the X node. The
triangle indicates that this is a twig representing a relative
structured index path expressions 118.

In one embodiment, the tree generator 370 generates the
new tree 412 and the twig generator 360 generates the new
twig. 414. In certain embodiments, or in addition, the forest
generator 330 may execute the skip module 350 which pre
vents the generation of the new tree 412 because the skip
module 350 may recognize that the root node of the XML
document is A and has already been identified and thus no
descendent nodes of the XML document can have X as a root
node. Alternatively, the comparison module 340 may execute
the pruning module 310 which removes 416 the tree 412 for
these same reasons. In contrast, the twig. 414 is not removed
because node X- in the triangle, is not a root node and thus
can match in the XML document on later encountered
descendent nodes.
The comparison module 240 compares nodeX to the nodes

of the pattern forest 406 and finds a match in the twig. 414 for
node Xbut node X is not an index match. The apparatus 200
then waits for the next node of interest to come by in the
stream 408.

Next, the identification module 220 sends node Y (arrow
N5) to the forest generator 230. The forest generator 230
makes no changes because the namespace is the same and has
been already used to populate/modify the forest 406. The
comparison module 240 compares node Y to the nodes of the
pattern forest 406 and finds a match for //X/Y in the twig. 414
because the Y node is an index node. The comparison module
240 may signal the storage module 260 to store an index entry
122 for node Y, such as for example, ("http:
\\www.example.com\Sample.xml” “Y” “NS2.” “Y is for

10

15

25

30

35

40

45

50

55

60

65

16
Yack”). The apparatus 200 then waits for the next node of
interest to come by in the stream 408. This process repeats
until the completion module 390 determines that a second
streaming XML document is next to arrive in the XML docu
ment stream 120. The completion module 390 may identify a
second streaming XML document by identifying the last
node of the current streaming XML document 408. Alterna
tively, or in addition, the completion module 390 may identify
a second streaming XML document by identifying the first
node of the a second streaming XML document.

FIG. 5 is a schematic flow chart diagram illustrating one
embodiment of a method 500 for efficient content indexing of
streaming XML document content. The method 500 begins.
The scanner 210 scans 510 a streaming XML document 408
in a stream of XML documents 120. In one embodiment, the
streaming XML document 408 is streamed in document order
according to XML tree traversal protocol. Next, the identifi
cation module 220 identifies 520 an XML node of the stream
ing XML document 408 in the stream 120. In one embodi
ment, the identification module 220 watches exclusively for
XML document element nodes and/or XML document ele
ment attribute nodes.

Next, the forest generator 230 generate or modifies 530 an
XML pattern forest 406 based on a set of structured index
path expressions 118. The XML pattern forest 406 includes
one or more trees 410 or one or more twigs 414 generated
from a set of structured index path expressions 118 uniquely
associated with a namespace indicator for the XML node.
With certain iterations, the pruning module 310, skip module
350, twig generator 360, tree generator 370, and/or grafting
module 380 may modify the XML pattern forest 406 for
efficiency and to accurately represent the structured index
path expressions 118 referenced by different namespace indi
CatOrS.

Next, the comparison module 240 compares 540 the XML
node to nodes of the XML pattern forest 406. Preferably, the
comparison module 240 searches nodes in each tree and in
each twig of the forest 406. In one embodiment, the compari
son module 240 may determine that the namespace indicator
is different from a previously identified namespace indicator
and cause the forest generator 230 to reference a second set of
structured indeX path expressions, the second set of structured
index path expressions identified by way of the namespace
indicator, the forest generator 230 may further modify the
XML pattern forest to include at least one of a tree and a twig
representative of the second set of structured index path
expressions and the set of structured indeX path expressions.
The determination module 250 determines 550 if there is a

match between the XML node and an index node in one of the
trees and/or twigs of the XML pattern forest 406. If not, the
method 500 returns to scanning 510 the streaming XML
document. If there is a match, the storage module 260 stores
560 an index entry 122 representative of the XML node.
The completion module 390 determines 570 if the end of

the streaming XML document has been reached and/or
whethera second streaming XML document is now present in
the stream 120. If not, the method 500 returns to scanning 510
the streaming XML document. If so, the completion module
390 may discard 580 or delete 580 the members of the XML
pattern forest 406. Then the method 500 returns to scanning
510 a subsequent streaming XML document.
The present invention may be embodied in other specific

forms without departing from its spirit or essential character
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which

US 8,255,394 B2
17

come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:
1. A method for content indexing of streaming hierarchical

document content, the method comprising:
identifying a hierarchical node from a streaming hierarchi

cal document, the streaming hierarchical document
streamed in document order from an stored intact hier
archical document, the streaminghierarchical document
comprising two or more namespace indicators, the hier
archical node associated with a first namespace indicator
of the two or more namespace indicators;

generating a first portion of a hierarchical pattern forest for
the first namespace indicator using a first set of struc
tured index path expressions, the hierarchical pattern
forest comprising at least one of a tree and a twiggen
erated from one or more structured indeX path expres
sions of the first set of structured indeX path expressions;

comparing the hierarchical node to nodes of the first por
tion of the hierarchical pattern forest;

matching the hierarchical node with an index node in one
of a tree and a twig of the first portion of the hierarchical
pattern forest, the indeX node having a path from an
ancestor node to the index node that matches axis steps
of at least one of the structured indeX path expressions
for the first namespace indicator,

storing an index entry for the hierarchical node in response
to the determined match;

identifying a second hierarchical node associated with a
second namespace indicator; and

generating a second portion of the hierarchical pattern
forest for the second namespace indicator using a second
set of structured index path expressions.

2. The method of claim 1, wherein each twig represents a
structured index path expression that has a descendent-or-self
axis for a first step.

3. The method of claim 1, wherein generating the first
portion of the hierarchical pattern forest further comprises,

reading the first set of structured index path expressions
from a repository, the first set of structured index path
expressions identified by way of the first namespace
indicator;

ignoring each indeX path expression having no descendent
axis steps;

ignoring each index path expression having a first axis step
that is different from a root node of the streaming hier
archical document;

defining a new twig for each indeX path expression having
a descendent-or-self axis for a first step, the new twig
comprising nodes representing the index path expres
sion;

defining a new tree for each index path expression having a
first axis step different from a root of an existing tree in
the hierarchical pattern forest, the new tree comprising
nodes representing the indeX path expression; and

identifying an existing tree in the forest having a root node
matching the first axis step of an index path expression
and appending a branch of nodes to the existing tree, the
branch of nodes corresponding to one or more axis steps
of the index path expression that differ from nodes of the
existing tree, the branch anchored at a node that matches
a last matching axis step of the index path expression
evaluated from left to right.

4. The method of claim 1, further comprising,
determining that the second namespace indicator is differ

ent from a previously identified namespace indicator;

10

15

25

30

35

40

45

50

55

60

65

18
referencing the second set of structured indeX path expres

sions, the second set of structured index path expres
sions identified by way of the second namespace indi
cator; and

modifying the hierarchical pattern forest to include at least
one of a tree and a twig representative of the second set
of structured index path expressions and the set of struc
tured index path expressions.

5. The method of claim 1, further comprising,
determining that the hierarchical node is a root node for the

streaming hierarchical document; and
removing one or more trees from the hierarchical pattern

forest having a root node that does not match the hier
archical node.

6. The method of claim 1, further comprising,
identifying a last node of the streaming hierarchical docu

ment; and
discarding the hierarchical pattern forest in response to

identifying the last node of the streaming hierarchical
document.

7. The method of claim 1, wherein the first set of structured
index path expressions is uniquely associated with the first
namespace indicator and wherein each structured index path
expression comprises a series of one or more steps, each step
comprising an axis step and each step having a node test and
no predicates.

8. A computer program product comprising a non-transi
tory computer readable storage medium having computer
usable program code executable to perform operations for
content indexing of streaming Extensible Markup Language
(XML) document content, the computer program product
comprising:

a scanner configured to scan a streaming XML document
in a stream of XML documents, the streaming XML
document streamed in document order from a stored
intact hierarchical document according to XML tree
traversal protocol;

an identification module configured to identify an XML
node of the streaming XML document, the XML node
comprising one of an XML document element node and
an XML document element attribute node, the streaming
XML document comprising two or more namespace
indicators, the XML node associated with a first
namespace indicator of the two or more namespace indi
cators;

a forest generator configured to generate a first portion of a
XML pattern forest for the first namespace indicator
using a first set of structured index path expressions, the
XML pattern forest comprising at least one of a tree and
a twig generated from at least a portion of one or more
structured index path expressions of the first set of struc
tured index path expressions;

a comparison module configured to compare the XML
node to nodes of the first portion of the XML pattern
forest;

a determination module configured to determine a match
between the XML node and an index node in one of a
tree and a twig of the first portion of the XML pattern
forest, the index node having a path from an ancestor
node to the index node that matches the axis steps of at
least one of the structured index path expressions for the
first namespace indicator; and

a storage module configured to store an index entry for the
XML node in response to the determined match,

the identification module further configured to identify a
second XML node associated with a second namespace
indicator; and

US 8,255,394 B2
19

the forest generator further configured to generate a second
portion of the XML pattern forest for the second
namespace indicator using a second set of structured
index path expressions.

9. The computer program product of claim 8, wherein the
forest generator comprises,

a read module configured to read the first set of structured
index path expressions from a repository, the first set of
structured index path expressions identified by way of
the first namespace indicator,

a skip module configured to ignore each indeX path expres
sion having no descendent axis steps, and to ignore each
index path expression having a first axis step that is
different from a root node of the streaming XML docu
ment;

a twig generator configured to define a new twig for each
index path expression having a descendent-or-self axis
for a first step, the new twig comprising nodes represent
ing the indeX path expression;

a tree generator configured to define a new tree for each
index path expression having a first axis step different
from a root of an existing tree in the XML pattern forest,
the new tree comprising nodes representing the index
path expression; and

a grafting module configured to identify an existing tree in
the forest having a root node matching the first axis step
of an indeX path expression and appending a branch of
nodes to the existing tree, the branch of nodes corre
sponding to one or more axis steps of the index path
expression that differ from nodes of the existing tree, the
branch anchored at a node that matches a last matching
axis step of the index path expression evaluated from left
to right.

10. The computer program product of claim 8, wherein the
comparison module is configured to determine that the sec
ond namespace indicator is different from a previously iden
tified namespace indicator and cause the forest generator to
reference the second set of structured index path expressions,
the second set of structured index path expressions identified
by way of the second namespace indicator, the forest genera
tor further configured to modify the XML pattern forest to
include at least one of a tree and a twig representative of the
second set of structured indeX path expressions and the first
set of structured index path expressions.

11. The computer program product of claim 8, wherein the
comparison module comprises a pruning module configured
to determine that the XML node is a root node for the stream
ing XML document, and remove one or more trees from the
XML pattern forest having a root node that does not match the
XML node.

12. The computer program product of claim 8, wherein the
forest generator comprises a completion module configured
to identify a second streaming XML document in the stream
of XML documents, and discard the XML pattern forest in
response to identifying the second streaming XML docu
ment.

13. The computer program product of claim 8, wherein the
first set of structured index path expressions is uniquely asso
ciated with the first namespace indicator and wherein each
structured indeX path expression comprises a series of one or
more steps, each step comprising an axis step and each step
having a node test and no predicates.

14. A system for content indexing of streaming Extensible
Markup Language (XML) document content, the system
comprising:

a storage services module executed by a processor within a
computer readable storage medium, the storage services

5

10

15

25

30

35

40

45

50

55

60

65

20
module configured to store documents in a storage
repository and to retrieve documents from the storage
repository in response to XML document requests;

a storage engine in communication with the storage ser
vices module, the storage engine configured to store
XML documents in the storage repository intact and to
generate a stream of XML documents, the stream of
XML documents comprising new XML documents that
are added to the storage repository and updates to exist
ing XML documents stored in the storage repository;

a document indexer configured to receive the stream of
XML documents and direct the stream of XML docu
ments to a content indexer comprising,
a scanner configured to scan a streaming XML docu
ment in a stream of XML documents, the streaming
XML document streamed in document order accord
ing to XML tree traversal protocol;

an identification module configured to identify an XML
node of the streaming XML document, the XML node
comprising one of an XML document element node
and an XML document element attribute node, the
streaming XML document comprising two or more
namespace indicators, the XML node associated with
a first namespace indicator of the two or more
namespace indicators;

a forest generator configured to generate a first portion
of a XML pattern forest for the first namespace indi
cator using a first set of structured indeX path expres
sions retrieved from an index path expression reposi
tory, the XML pattern forest comprising at least one of
a tree and a twig generated from one or more struc
tured index path expressions of the first set of struc
tured index path expressions;

a comparison module configured to compare the XML
node to nodes of the first portion of the XML pattern
forest;

a determination module configured to determine a match
between the XML node and an index node in one of a
tree and a twig of the first portion of the XML pattern
forest, the index node having a path from an ancestor
node to the index node that matches the axis steps of
at least one of the structured index path expressions
for the first namespace indicator, and

a storage module configured to store an index entry for
the XML node in an index store in response to the
determined match;

the identification module further configured to identify a
second XML node associated with a second
namespace indicator; and

the forest generator further configured to generate a
second portion of the XML pattern forest for the sec
ond namespace indicator using a second set of struc
tured index path expressions; and

a query services module configured to receive index que
ries for XML documents containing content satisfying
an index query and configured to return index entries
that satisfy the index query.

15. The system of claim 14, wherein the forest generator
comprises,

a read module configured to read the first set of structured
index path expressions from a repository, the first set of
structured index path expressions identified by way of
the first namespace indicator;

a skip module configured to ignore each indeX path expres
sion having no descendent axis steps, and to ignore each

US 8,255,394 B2
21

index path expression having a first axis step that is
different from a root node of the streaming XML docu
ment;

a twig generator configured to define a new twig for each
index path expression having a descendent-or-self axis
for a first step, the new twig comprising nodes represent
ing the indeX path expression;

a tree generator configured to define a new tree for each
index path expression having a first axis step different
from a root of an existing tree in the XML pattern forest,
the new tree comprising nodes representing the index
path expression; and

a grafting module configured to identify an existing tree in
the forest having a root node matching the first axis step
of an indeX path expression and appending a branch of
nodes to the existing tree, the branch of nodes corre
sponding to one or more axis steps of the index path
expression that differ from nodes of the existing tree, the
branch anchored at a node that matches a last matching
axis step of the index path expression evaluated from left
to right.

16. The system of claim 14, wherein the comparison mod
ule is configured to determine that the second namespace
indicator is different from a previously identified namespace
indicator and cause the forest generator to reference the sec
ond set of structured indeX path expressions, the second set of
structured index path expressions identified by way of the
second namespace indicator, the forest generator further con
figured to modify the XML pattern forest to include at least
one of a tree and a twig representative of the second set of
structured index path expressions and the first set of struc
tured index path expressions.

17. The system of claim 14, wherein the comparison mod
ule comprises a pruning module configured to determine that
the XML node is a root node for the streaming XML docu
ment, and remove one or more trees from the XML pattern
forest having a root node that does not match the XML node.

18. The system of claim 14, wherein the forest generator
comprises a completion module configured to identify a sec
ond streaming XML document in the stream of XML docu
ments, and discard the XML pattern forest in response to
identifying the second streaming XML document.

19. The system of claim 14, wherein the first set of struc
tured indeX path expressions is uniquely associated with the
first namespace indicator and wherein each structured index
path expression comprises a series of one or more steps, each
step comprising an axis step and each step having a node test
and no predicates.

20. A computer program product comprising a non-transi
tory computer readable storage medium having computer
usable program code executable to perform operations for
content indexing of streaming Extensible Markup Language
(XML) document content, the computer program product
comprising:

a scanner configured to scan a streaming XML document
in a stream of XML documents, the streaming XML
document streamed in document order according to
XML tree traversal protocol from a stored intact hierar
chical document;

an identification module configured to identify an XML
node of the streaming XML document, the XML node

10

15

25

30

35

40

45

50

55

60

22
comprising one of an XML document element node and
an XML document element attribute node, the streaming
XML document comprising one two or more namespace
indicators, the XML node associated with a particular
namespace indicator of the one two or more namespace
indicators;

a forest generator configured to generate a first portion of a
XML pattern forest for the first namespace indicator
using a first set of structured index path expressions, the
XML pattern forest comprising at least one of a tree and
a twig generated from at least a portion of one or more
structured index path expressions of the first set of struc
tured index path expressions,

read module configured to read the first set of structured
index path expressions from a repository, the first set of
structured index path expressions identified by way of
the first namespace indicator;

skip module configured to ignore each index path expres
sion having no descendent axis steps, and to ignore each
index path expression having a first axis step that is
different from a root node of the streaming XML docu
ment;

twig generator configured to define a new twig for each
index path expression having a descendent-or-self axis
for a first step, the new twig comprising nodes represent
ing the indeX path expression;

a comparison module configured to compare the XML
node to nodes of the first portion of the XML pattern
forest;

a determination module configured to determine a match
between the XML node and an index node in one of a
tree and a twig of the first portion of the XML pattern
forest;

a storage module configured to store an index entry for the
XML node in response to the determined match,

the comparison module configured to compare a second
XML node to nodes of the XML pattern forest and
configured to determine that a second namespace indi
cator of the second XML node is different from a previ
ously identified namespace indicator and cause the for
est generator to reference a second set of structured
index path expressions, the second set of structured
index path expressions identified by way of the second
namespace indicator, the forest generator further config
ured to generate a second portion of the hierarchical
pattern forest for the second namespace indicator using
a second set of structured index path expressions and
modify the XML pattern forest to include at least one of
a tree and a twig representative of the second set of
structured index path expressions and the set of struc
tured index path expressions;

the determination module configured to determine a match
between the XML node and an index node in one of a
tree and a twig of the XML pattern forest, the index node
having a path from an ancestor node to the indeX node
that matches the axis steps of at least one of the struc
tured index path expressions of the particular namespace
indicator; and

the storage module configured to store an index entry for
the XML node in response to the determined match.

k k k k k

