
(12) United States Patent
Charboneau et al.

USOO8903 785B2

(10) Patent No.: US 8,903,785 B2
(45) Date of Patent: Dec. 2, 2014

(54) BASELINES OVER INDEXED, VERSIONED
DATA

(75) David P. Charboneau, Durham, NC
(US); Simon K. Johnston, Snohomish,
WA (US); Philippe P. Mulet,
Saint-Nazaire (FR)

Inventors:

(73) International Business Machines
Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 488 days.

(21)

(22)

Appl. No.: 12/883,119

Filed: Sep.15, 2010

Prior Publication Data

US 2012/0066228A1 Mar. 15, 2012
(65)

(30) Foreign Application Priority Data

Sep. 13, 2010 (EP) 10305978

(51) Int. Cl.
G06F 7/30
U.S. C.
CPC. G06F 17730312 (2013.01); G06F 17/30309

(2013.01)
USPC .. 707/695
Field of Classification Search
CPC G06F 17/3023; G06F 17/2288: G06F

17/30309
USPC .. 707/638, 695
See application file for complete search history.

(2006.01)
(52)

(58)

Computing Device 100

Data Store Sytem
110 120

DataStore
150 160
Data Index

Elements)
152 162

IndexingSytem

Index Store

Elements)

(56) References Cited

U.S. PATENT DOCUMENTS

7,664,798 B2 2/2010 Wood et al.
7,707,183 B2 4/2010 Alstrin et al.

2003/01 15223 A1* 6/2003 Scott et al. 707/2O3
2003/0208490 A1 11/2003 Larrea et al.
2004/0249823 A1* 12/2004 Raghuvir et al. 7O7/1OO
2005/0071390 A1* 3/2005 Midgley et al. ... TO7.204
2007/0088766 A1* 4/2007 Bodge et al. 707/2O3
2007/O143752 A1 6/2007 Clemm et al.
2007/O220507 A1 9, 2007 Back et al.
2007/0226024 A1 9/2007 Harvey et al.
2009/0307277 A1 12/2009 Grubov et al.
2010, 0122120 A1 5, 2010 Lin
2010/0174682 A1 7/2010 Alstrinet al.

OTHER PUBLICATIONS

Evans, R.P. S. Park, and M. Merriman, “Engineering Baselines in
System Development: Using ASCII Files, Two-Column Index Files,
and System Numbers, Engineering Tags, and Change Set Numbers'.
Proceedings of the First IEEE International Conference on Engineer
ing of Complex Computer Systems, Nov. 1995, 4 pp.

(Continued)
Primary Examiner — Thu-Nguyet Le
(74) Attorney, Agent, or Firm — Janaki K. Davda; Konrad,
Raynes, Davda & Victor LLP
(57) ABSTRACT
Provided are techniques for receiving a request to create a
current baseline with a baseline identifier and selecting data
elements that are to be included in the current baseline. For
each of the data elements, for a version of the data element to
be included in the current baseline, a reference to the version
of the data element is added to the current baseline and a
baseline index element for the version of the data element is
maintained by one of creating a new baseline index element
or updating an existing baseline index element.

21 Claims, 10 Drawing Sheets

Baseline
Generator

130

Baseline Store
170

Baseline(s)172

Baseline
Index(es) 174

Baseline
Index16
Baseline
Index

Element(s)
178

US 8,903,785 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Ratanotayanon, S., H.J. Choi, and S.E. Sim, “My Repository Run
neth Over: An Empirical Study on Diversifying Data Sources to
Improve FeatureSearch'. Proceedings of the 18th IEEE International
Conference on Program Comprehension, 2010, 10 pp.
AlfrescoWiki. “AVM', online), Retrieved on Sep. 20, 2010).
Retrieved from the Internet at URL: <http://wiki.alfresco.com/wiki/
Versioned Directories.>, Last modified on Jul. 23, 2009, Total 6 pp.

Alfresco Wiki. “WCM Overview”, online), Retrieved on Sep. 20,
2010. Retrieved from the Internet at URL: <http://wiki.alfresco.
com/wiki/WCM Overview>, Last modified on Jul 23, 2009, Total 8
pp.
Interwoven, "Datasheet Interwoven ControlHub', (C) 2007 Interwo
ven, Inc., Total 2 pp.
Sussman, B.C., B.W. Fitzpatrick, and C.M. Pilato, “Version Control
with Subversion for Subversion 1.5 (Compiled from r3305), (C)
2002-2008, Total 90 pp.

* cited by examiner

U.S. Patent Dec. 2, 2014 Sheet 1 of 10 US 8,903,785 B2

Computing Device 100

Data Store Sytem Indexing Sytem E.
110 120 130

Daise indsor Basel stor
Data indeX

Element(s) Element(s) Baseline(s) 172
152 162

Baseline
Index(es) 174

Baseline
Index 176
Baseline
Index

Element(s)
178

U.S. Patent Dec. 2, 2014 Sheet 2 of 10 US 8,903,785 B2

Baseline Store 17

FIG.2

U.S. Patent Dec. 2, 2014 Sheet 3 of 10 US 8,903,785 B2

FIG. 3

U.S. Patent Dec. 2, 2014 Sheet 4 of 10 US 8,903,785 B2

400

<http://example.org/data?e1.r1D dc:title "Some Resource".
<http://example.org/data/e1.r1 > do:description "Some interesting resource.".
<http://example.org/data/e1.r1 > dc:created "2009-08-19T10:55:00Z".

FIG. A.

U.S. Patent Dec. 2, 2014 Sheet 5 of 10 US 8,903,785 B2

500

<http://example.org/data/e1.r1 > do:title "Some Resource".
<http://example.org/data/e1.r1 > do:description "Some interesting resource.".
<http://example.org/data/e1.r1 > do:created "2009-08-19T10:55:00Z".
<http://example.org/data/e1.rl bl:participates.In <http://example.org/baselines/baseline-12.
<http://example.org/data/e1.r1 > bl:participates.In <http://example.org/baselines/baseline-2.
<http://example.org/data/e1.r1 > bl:participatesin <http://example.org/baselines/baseline-3>.

FIG. 5

U.S. Patent Dec. 2, 2014 Sheet 6 of 10 US 8,903,785 B2

Receive request to Create baseline with a 600
baseline identifier for a particular date and

time for One Ormore data elements.

Select the One Ormore data
elements that are to be

included in the baseline using 602
default Criteria Or Criteria
provided by the user.

Select next data element,
starting with first data element.

MOStreCent
Version of data element in
data store to be included

in baseline?

Create a new baseline index
element by Copying the index
element to the baseline index

and adding the baseline
identifier as a baseline tag to

the new baseline indeX
element.

FIG.6A

U.S. Patent Dec. 2, 2014 Sheet 7 of 10 US 8,903,785 B2

LOcate existing baseline index
Version of element in existing baseline

data element to be index for the Version of the
included in baseline already data element and add the

included in an existing baseline identifier as a baseline
baseline? tag to the existing baseline

index element.

Retrieve the Version of the data
element to be stored in the
baseline, Obtain a new index
element from the indexing

system (which re-indexes the
Version of the data element),
and Create a new baseline

indeX element by Copying the
new indeX element to the

baseline index and adding the
baseline identifier as a baseline
tag to the new baseline index

element.

All data elements
Selected?

FIG. 6B

U.S. Patent Dec. 2, 2014 Sheet 8 of 10 US 8,903,785 B2

700 Receive request to delete baseline
With a particular baseline identifier.

Identify One Ormore baseline
indeX elements in One Ormore 702
baseline indexes tagged with

the baseline identifier.

Select next baseline index
element, starting with first
baseline indeX element.

704

Remove the baseline tag with
the particular baseline identifier

from the baseline index
element in the baseline index.

DOes baseline index
element have more than

One baseline tag?

Delete the baseline
index element from

baseline index.

AI
baseline index elements

Selected?

FIG. 7

U.S. Patent Dec. 2, 2014 Sheet 9 of 10 US 8,903,785 B2

Receive Search 800
request againsta

baseline.

Use baseline indeX to respOnd 802
to Search request.

FIG. 8

U.S. Patent Dec. 2, 2014 Sheet 10 of 10 US 8,903,785 B2

900

Computer Architecture
Memory

Elements 904

P Operating
tors System 905

Computer
Program(s)

906

I/O NetWOrk
Controller(s) Adapter(s)

910 908

Input Device Output Device Storage
912 914 916

FIG. 9

US 8,903,785 B2
1.

BASELINES OVER INDEXED, VERSIONED
DATA

CROSS-REFERENCE TO RELATED FOREIGN
APPLICATION

This application is a non-provisional application that
claims priority benefits under Title 35, Unites States Code,
Section 119(a)-(d) or Section365(b) of European Patent (EP)
Application entitled “BASELINES OVER INDEXED, VER
SIONED DATA, having EP Application No. EP10305978.8,
filed on Sep. 13, 2010, by David P. CHARBONEAU, Simon
K. JOHNSTON, and Philippe P. MULET, which application
is incorporated herein by reference in its entirety.

BACKGROUND

1. Field
Embodiments of the invention relate to creating and delet

ing baselines over indexed, versioned data.
2. Description of the Related Art
Historical views, which are also referred to as “baselines.”

are created for a data store that holds indexed and versioned
data. That is, the data store holds data elements. The data
elements may be indexed. Also, different versions of the data
elements may be stored. A baseline may be described as a
named configuration of specific data element revisions in the
data store that represents the state of the data store at a par
ticular point in time (similar to a Snapshot of the data).

First, although data elements in the data store are indexed,
many conventional systems do not include the index data
(also referred to as index elements) in the baseline. Thus,
conventional systems can identify the versions of data ele
ments in a baseline, but, because conventional systems do not
preserve the index properties, the contents of the baseline are
not available for query or search.

Second, to Support query or search, come conventional
systems may maintain the index properties corresponding to
every version of a data element, whether or not that data
element version participates in a baseline.

Thus the first and second solutions are unsatisfactory. The
issue with the first solution is that users have a hard time
answering common questions, such as “find all high priority
items, for customer X, in baseline Y”. In the case of the
second solution, the index data is available for query, but a
huge amount of the storage is used by data that is irrelevant
and not useful in Supporting user scenarios. In cases in which
the second solution is used, the size of the resulting index
degrades the performance of common operations.

Additionally some conventional Solutions require that a
database be "locked' while a baseline is created. That is, no
further edits can be made to data elements in the data store
while the baseline is created to prevent the inclusion of newer
states that were created after the baseline was requested.

Thus, there is a need for baselines over indexed, versioned
data.

BRIEF SUMMARY

Provided are a method, computer program product, and
system for receiving a request to create a current baseline with
a baseline identifier and selecting data elements that are to be
included in the current baseline. For each of the data ele
ments, for a version of the data element to be included in the
current baseline, a reference to the version of the data element
is added to the current baseline and a baseline index element

10

15

25

30

35

40

45

50

55

60

65

2
for the version of the data element is maintained by one of
creating a new baseline index element or updating an existing
baseline index element.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 illustrates, in a block diagram, a computing archi
tecture in accordance with certain embodiments.

FIG. 2 illustrates, in a block diagram, an example of cre
ating a baseline in accordance with certain embodiments.

FIG. 3 illustrates, in a block diagram, an example of states
of a data store at different points in time in accordance with
certain embodiments.

FIG. 4 illustrates, in a block diagram, an example index
element in accordance with certain embodiments.

FIG.5 illustrates, in a block diagram, an index element that
participates in three baselines in accordance with certain
embodiments.

FIG. 6 illustrates, in a flow diagram, logic performed to
create a baseline in accordance with certain embodiments.

FIG. 6 is formed by FIGS. 6A and 6B.
FIG. 7 illustrates, in a flow diagram, logic to delete a

baseline in accordance with certain embodiments.
FIG. 8 illustrates, in a flow diagram, logic to use a baseline

index in accordance with certain embodiments.
FIG. 9 illustrates, in a block diagram, a computerarchitec

ture that may be used in accordance with certain embodi
mentS.

DETAILED DESCRIPTION

In the following description, reference is made to the
accompanying drawings which form a part hereof and which
illustrate several embodiments of the invention. It is under
stood that other embodiments may be utilized and structural
and operational changes may be made without departing from
the scope of the invention.

FIG. 1 illustrates, in a block diagram, a computing archi
tecture in accordance with certain embodiments. A comput
ing device 100 includes a data store system 110 that provides
access (e.g., read/write access to retrieve data elements,
update data elements, create data elements, delete data ele
ments, etc.) for an application to the data store 150. The data
store 150 stores one or more data elements 152. In certain
embodiments, the data store system 110 is a database system,
and the data store 150 is a database.
The computing device 100 also includes an indexing sys

tem 120 that indexes the data elements in the data store 150
and stores one or more index elements 162 (also referred to as
index data) in the index store 160.

In addition, the computing device 100 includes a baseline
generator 130 for generating one or more baselines 172 and
one or more baseline indexes 174 that are stored in the base
line store 170. Thus, the baseline store 170 contains both
baselines 172 and baseline indexes 174. A baseline 172 refers
to a set of specific versions of data elements 152 still located
in the data store 150 (i.e., there is no duplication of the data
elements 152). Each baseline 172 has a corresponding base
line index 174 co-located in the baseline store 170. A baseline
index 174 is formed of baseline index elements (i.e., a set of
index elements which have each been augmented with a base
line tag (which are extra properties to record participation in
a baseline). For example, baseline index 176 includes base
line index elements 178.

US 8,903,785 B2
3

The data store 150 contains the original data elements 152
and any versions of the data elements 152. The data elements
152 may be files, documents, tables or other digital media.
The data elements 152 are versioned in that each update to a
data element 152 creates a new state of the data element 152.
The index store 160 contains index elements 162 correspond
ing to the data elements 152. The index elements 162 may be
described as queryable properties (i.e., the index elements
162 may be queried or searched). The baseline store 170
contains a baseline 172 and a baseline index 174 pertaining to
versions of data elements 152 selected for the baseline 172.
The baseline store 170 contains copies of the index elements
162 in the index store 160 that pertain to those revisions of
data elements 152 in the data store 150 that are participating
in baselines 172. The copies of the index elements 162 are
augmented with baseline tags and stored in baseline indexes
174. The baseline index elements may be described as que
ryable properties (i.e., the baseline index elements may be
queried or searched).

FIG. 2 illustrates, in a block diagram, an example of cre
ating a baseline in accordance with certain embodiments. In
FIG. 2, the data elements (e.g., e1, e2) are data elements
stored by an application. In FIG. 2, the index elements (e.g.,
i1, i2) may be described as sets of properties specific to a
particular data element, and there is a 1:1 relationship
between a data element and an index element. The indexing
system 120 creates an index element for a data element (e.g.,
it is created for e1, and i2 is created for e2). The baseline
generator 130 generates baseline index elements (e.g., base
line index element (i2)), which is a copy of the index element
(i2) from the index store 160, augmented with baseline tags.
The baseline generator 130 constructs enough baseline

index elements to support query and search over the baseline
data elements without having to have the original index store
150 maintain an index for every version of every data element
in the original data store 150. FIG. 3 illustrates, in a block
diagram, an example of States of a data store at different
points in time in accordance with certain embodiments. The
data store of FIG. 3 is an example of data store 150. In FIG.3,
the data store contains versions of data elements. The label
“em” is used to refer to an element (e.g., e1, e2, and e3 are data
elements), where “m' is an integer. The label “rn' is used to
refer to a version of an element, wherein “n” is an integer, and
each of the data elements has 1... n versions (the versions are
shown named r1 ... rn and grouped by data element). For
example, (e3.r2) describes element 3, version 2. FIG. 3 illus
trates six states of the data store to enhance understanding of
the invention.

In state 300, the data store contains two data elements (e1,
e2), data element one has a single version (e.r1) and data
element two has two versions (e2.1, e2.r2) (for this example,
it may be assumed that version one (e2.r1) is the newly
created element and version two (e2.r2) represents an update
to the data element e2).

In state 310, the user requests to create a baseline of all data
elements in the data store (named “baseline-1) as of the
current time. In this case, the baseline generator 130 selects
e1.r1 as the current version of data element e1, selects e2.r2 as
the current version of data element e2, and includes e1.r1 and
e2.r2 in baseline-1. In FIG. 3, the darker squares are used to
highlight the versions of data elements that are added to
baselines.

In state 3320, two new versions have been added to the data
store: e2 has been updated to version 3 (e2.r3) and a new
element e3 (e3.r1) has been added.

In state 4330, the user requests to create a baseline of all
data elements in the data store (named “baseline-2) as of the

10

15

25

30

35

40

45

50

55

60

65

4
current time. In this case, the baseline generator 130 selects
e1.r1 (again), e2.r3, and ar1 and adds these to baseline-2.

In state 5 340, two new versions have been added to e3
(e3r2, e3.r3).

In state 6350, the user requests to create a baseline of all
data elements in the data store (named “baseline-3) as of
Some previous time (rather than the current time). In this case,
the baseline generator 130 selects e1.r1 (again), e2.r3 (again),
and e3.r2 (rather than e3.r3 because the baseline is for some
previous time).
The index for e1.r1 has been used in all three baselines, the

index for e2.r3 exists in two baselines, and e2.r2, e3.r1 and
e3.r2 each exist in a single baseline. Also, e3.r2 is a state of a
data element in the past, the index store only contains the
index elements for the most recent version (e3.r3), and so the
baseline generator 130 relies on the indexing system 120 to
re-create the index for e3.r2.

This Support for baselining data elements that are not cur
rent allows the baseline generator 130 to create baselines
while the data store 150 is being used. For example, with
reference to FIG. 3, imagine that e3.r2 was the current revi
sion when the user requests to create the baseline, and the
baseline generator 130 identifies that version in a list of pend
ing data elements to process. When the baseline generator
130 gets to that data element, which another user has updated,
creating e3.r3, the baseline generator 130 simply re-indexes
e3.r2 as if working on a baseline in the past.

In certain embodiments, an index element can be consid
ered as a set of triples of the following form:
<URL of the Data Element Version><Property
Identifiers<Property Valued

FIG. 4 illustrates, in a block diagram, an example index
element 400 inaccordance with certain embodiments. In FIG.
4, the example uses the Resource Description Framework
(RDF) N-Triples syntax.
An index element 162 is copied from the index store 160

into the baseline store 170 and augmented with particular
properties to identify that the index element participates in
one or more baselines 172. FIG. 5 illustrates, in a block
diagram, an index element 500 that participates in three base
lines in accordance with certain embodiments.

With embodiments, baseline tags that identify baseline
participation are added to the index element, and this allows
for the baseline generator 130 to “compress’ the baseline
store 170 by re-using index elements and reducing the num
ber of overall baseline index elements and index properties
the baseline store 170 stores. This not only has a positive
impact on the storage requirements, but also on the perfor
mance of the overall system of computing device 100, as
fewer index elements are faster to query over and the baseline
generator 130 creates fewer index elements. Thus, the base
line generator 130 creates a baseline efficiently and quickly.

FIG. 6 illustrates, in a flow diagram, logic performed to
create a baseline in accordance with certain embodiments.
FIG. 6 is formed by FIGS.6A and 6B. Control begins at block
600 with the baseline generator 130 receiving a request to
create a baseline 172 with a baseline identifier for a particular
date and time for one or more data elements 152. In certain
embodiments, the request is from a user who specifies at least
a timestamp that represents the baseline date/time and an
identifier for the baseline 172. In certain embodiments, the
user may also specify criteria whereby a subset of the data
elements 152 stored in the data store 150 are included in the
baseline 172.

In block 602, the baseline generator 130 selects the one or
more data elements 152 that are to be included in the baseline

US 8,903,785 B2
5

172 using either default criteria or criteria provided by the
user. In certain embodiments, all data elements 152 in the data
Store 150 are selected.

Blocks 604-614 represent processing for each of the
selected data elements 152. For the version of the data ele- 5
ment 152 to be included in the baseline, the baseline generator
130 adds a reference to that version of the data element 152 to
the baseline 172 and maintains a baseline index element in a
baseline index 174 for the version of the data element 152,
wherein the version is either a current version or a prior 10
version. Maintaining the baseline indeX element may includ
ing creating a new baseline indeX element or updating an
existing baseline index element with a new baseline tag.

In block 604, the baseline generator 130 selects the next
data element 152 (from the selected one or more data ele- 15
ments 152), starting with the first data element 152. In block
606, the baseline generator 130 determines whether the most
recent version of the data element 152 in the data store 150 is
to be included in the baseline 172. If so, processing continues
to block 608, otherwise, processing continues to block 610 20
(FIG. 6B). In block 608, the baseline generator 130 creates a
new baseline index element by copying the index element 162
from the index store 160 to the baseline index 174 in the
baseline store 170 and adding the baseline identifier as a
baseline tag to the new baseline index element. That is, if the 25
most recent version of the data element 152 in the data store
150 is to be included in the baseline 172, then the index
element 162 is available in the index store 160 for this data
element 152. From block 608, processing continues to block
616 (FIG. 6B). 30

In block 610, the baseline generator 130 determines
whether the version of the data element to be included in the
baseline is already included in an existing baseline. If so,
processing continues to block 612, otherwise, processing
continues to block 614. That is, if the data element 152 is 35
already included in an existing baseline 172, then a corre
sponding baseline index element already exists in an existing
baseline index 174. In block 612, the baseline generator 130
locates the existing baseline index element in the existing
baseline index 174 for the version of the data element 152 and 40
adds the baseline identifier (specified in the request) as a
baseline tag to the existing baseline index element. Again, if
the version of the data element 152 to be included in the
baseline 172 is already included in an existing baseline 172,
then the existing baseline 172 also has a corresponding base- 45
line index 174 with a baseline index element for the data
element 152, and, the baseline generator 130 updates this
baseline indeX element. From block 612, processing contin
ues to block 616.

If the version of the data element 152 to be included in the 50
baseline 172 is not the most recent version of the data element
152 and is not included in an existing baseline 172, process
ing goes to block 614. In block 614, the baseline generator
130 retrieves the version of the data element 152 to be stored
in the baseline 172, obtains a new index element 162 from the 55
indexing system (which re-indexes the version of the data
element 152), and creates a new baseline index element by
copying the new index element 162 to the baseline index 174
and adding the baseline identifier as a baseline tag to the new
baseline index element. That is, the baseline generator 130 60
invokes the indexing system 120 to create a new index ele
ment 162 for the version of the data element 152. This is done
because the index store 160 does not save index elements 162
for every version of every data element 152.

Re-indexing may be described as indexing again. Any pro- 65
cess that is used to extractor create an index element 162 from
a data element 152 is invoked on the specific version of a data

6
element 152 that participates in the baseline 172. For
example, if there was some indexer for a binary data element,
the indexer would be invoked again.

Thus, in some cases, the data element 152 is re-indexed. In
general, typically a baseline 172 contains many of the same
data element revisions, and so only new baseline tags are
added to existing baseline index elements. Also, the second
most likely case is that a selected data element 152 is still at
the current version, and so the index element is copied to
create a new baseline index element. The least frequent case
is the one in which the data element 152 is re-indexed.
Embodiments provide savings in terms of size of the storage
and overall system performance in not having to store all
index elements 162 for all data element revisions and specifi
cally not having duplicated indeX elements 162.

FIG. 7 illustrates, in a flow diagram, logic to delete a
baseline 172 in accordance with certain embodiments. Con
trol begins at block 700 with the baseline generator 130
receiving a request to delete a baseline 172 with a particular
baseline identifier. In block 702, the baseline generator 130
identifies one or more baseline index elements in one or more
baseline indexes 174 tagged with the baseline identifier (i.e.,
baseline index elements having baseline tags with the particu
lar baseline identifier). In block 704, the baseline generator
130 selects the next baseline index element (from the selected
one or more baseline index elements), starting with the first
data element. In block 706, the baseline generator 130 deter
mines whether the baseline index element has more than one
baseline tag. If so, processing continues to block 708, other
wise, processing continues to block 710. In block 708, the
baseline generator 130 removes the baseline tag with the
particular baseline identifier from the baseline index element
in the baseline index 174. This updated baseline index 174 is
saved. From block 708, processing continues to block 712. In
block 710, the baseline index element has one baseline tag
(with the particular baseline identifier), and the baseline gen
erator 130 deletes the baseline index element from the base
line index 174. From block 710, processing continues to
block 712. In block 712, the baseline generator 130 deter
mines whether all baseline index elements have been
selected. If so, processing is done, otherwise, processing
loops back to block 704.

FIG. 8 illustrates, in a flow diagram, logic to use a baseline
index in accordance with certain embodiments. Control
begins at block 800 with receipt of a search request against a
baseline 172. In block 802, a baseline index 174 that corre
sponds to the baseline 172 is used to respond to the request.

Thus, by copying only those index elements 162 to create
baseline indeX elements (augmented with baseline tags)
required to satisfy a baseline 172, the baseline generator 130
reduces storage cost and optimizes overall system perfor
mance. By Supporting the re-indexing of data element ver
sions, the baseline generator 130 can satisfy requests to create
a baseline 172 in the past or satisfy a request to create a
baseline 172 on a live system. By Supporting tagging of
baseline index elements, the baseline generator 130 is able to
“compress the baseline store 170 and re-use a baseline index
element multiple times, where the baseline index element
exists in multiple baselines 172.

Thus, with embodiments, the index elements 162 for a
particular version of the data elements 152 included in a
baseline 172 is included in a baseline index 174 and is que
ryable within the context of that baseline 172. However, the
index store 160 does not maintain the index elements 162 for
all versions of all data elements 152 contained within the data
Store 150.

US 8,903,785 B2
7

Embodiments are useful for many Application Lifecycle
Management (ALM) scenarios and products and to content
management Solutions in which content is both versioned and
the product supports Some notion of a baseline of the content.
Many content management solutions also have the notion of
index properties assigned by either the content management
system or the users that provide search and/or query enabled
fields for categorization and retrieval. These indexes repre
sent information about the data elements and the state of these
properties corresponding to the particular version of a data
element. With embodiments, such indexes are captured as
part of a baseline so that the state of the data elements in the
baseline are equally available for query and search.

Embodiments enable maintaining indeX elements 162 just
for the current version of each versioned data element 152 and
only those non-current (prior) versions of the data elements
152 that have been included in a baseline collection of data
elements 152. Moreover, embodiments provide betterstorage
utilization and faster search capabilities than conventional
systems.

Additional Embodiment Details

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, Solid state memory, magnetic tape or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

5

10

15

25

30

35

40

45

50

55

60

65

8
Program code embodied on a computer readable medium

may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the embodiments of the invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational pro
cessing (e.g., operations or steps) to be performed on the
computer, other programmable apparatus or other devices to
produce a computer implemented process such that the
instructions which execute on the computer or other program
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.
The code implementing the described operations may fur

ther be implemented in hardware logic or circuitry (e.g., an
integrated circuit chip, Programmable Gate Array (PGA),
Application Specific Integrated Circuit (ASIC), etc. The
hardware logic may be coupled to a processor to perform
operations.

FIG. 9 illustrates, in a block diagram, a computerarchitec
ture 900 that may be used in accordance with certain embodi
ments. Computing device 100 may implement computer
architecture 900. The computer architecture 900 is suitable
for storing and/or executing program code and includes at
least one processor 902 coupled directly or indirectly to
memory elements 904 through a system bus 920. The

US 8,903,785 B2

memory elements 904 may include local memory employed
during actual execution of the program code, bulk storage,
and cache memories which provide temporary storage of at
least some program code in order to reduce the number of
times code must be retrieved from bulk storage during execu
tion. The memory elements 904 include an operating system
905 and one or more computer programs 906.

Input/Output (I/O) devices 912, 914 (including but not
limited to keyboards, displays, pointing devices, etc.) may be
coupled to the system either directly or through intervening
I/O controllers 910.
Network adapters 908 may also be coupled to the system to

enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modemand Ethernet cards are just a few of the currently
available types of network adapters 908.
The computer architecture 900 may be coupled to storage

916 (e.g., a non-volatile storage area, Such as magnetic disk
drives, optical disk drives, a tape drive, etc.). The storage 916
may comprise an internal storage device or an attached or
network accessible storage. Computer programs 906 in stor
age 916 may be loaded into the memory elements 904 and
executed by a processor 902 in a manner known in the art.
The computer architecture 900 may include fewer compo

nents than illustrated, additional components not illustrated
herein, or some combination of the components illustrated
and additional components. The computer architecture 900
may comprise any computing device known in the art, such as
a mainframe, server, personal computer, workstation, laptop,
handheld computer, telephony device, network appliance,
virtualization device, storage controller, etc.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in Some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.

The terminology used herein is for the purpose of describ
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an and “the are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com
prising, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other

5

10

15

25

30

35

40

45

50

55

60

65

10
claimed elements as specifically claimed. The description of
embodiments of the present invention has been presented for
purposes of illustration and description, but is not intended to
be exhaustive or limited to the invention in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
The foregoing description of embodiments of the invention

has been presented for the purposes of illustration and
description. It is not intended to be exhaustive or to limit the
embodiments to the precise form disclosed. Many modifica
tions and variations are possible in light of the above teaching.
It is intended that the scope of the embodiments belimited not
by this detailed description, but rather by the claims appended
hereto. The above specification, examples and data provide a
complete description of the manufacture and use of the com
position of the embodiments. Since many embodiments may
be made without departing from the spirit and scope of the
invention, the embodiments reside in the claims hereinafter
appended or any Subsequently-filed claims, and their equiva
lents.

The invention claimed is:
1. A method, comprising:
in response to determining that a version of a data element

in a data store is to be included in a current baseline
having a current baseline identifier and representing a
set of data elements at a point in time and has not been
included in another baseline,
adding a reference to the version of the data element to

the current baseline; and
adding a new baseline index element for the version of

the data element and the current baseline identifier to
a current baseline index associated with the current
baseline to record participation of the version of the
data element in the current baseline; and

in response to determining that the version of the data
element has been included in the another baseline,
locating a baseline index element in another baseline

index associated with the another baseline for the
version of the data element; and

adding the current baseline identifier to the located
baseline index element to record participation of
the version of the data element in the current base
line.

2. The method of claim 1, wherein the version of the data
element is a most recent version of the data element.

3. The method of claim 1, wherein the current baseline
comprises versions of specific data elements stored in a data
store and index elements stored in an index store, and wherein
the current baseline represents a state of the data store and the
index store at a particular point in time.

4. The method of claim 1, wherein a request is received to
create the current baseline at a specified date and time.

5. The method of claim 1, wherein a request is received that
specifies criteria for selecting a Subset of data elements in a
data store to be included in the current baseline.

6. The method of claim 1, further comprising:
receiving a request to delete a particular baseline with a

particular baseline identifier; and
removing the particular baseline identifier for the particu

lar baseline.

that specifies criteria for selecting a subset of data elements in
a data store to be included in the current baseline.

US 8,903,785 B2
11

7. The method of claim 1, further comprising:
updating another baseline index element.
8. A system, comprising:
a processor; and
storage coupled to the processor, wherein the storage stores 5

a computer program, and wherein the processor is con
figured to execute the computer program to perform
operations, the operations comprising:

in response to determining that a version of a data element
in a data store is to be included in a current baseline
having a current baseline identifier and representing a
set of data elements at a point in time and has not been
included in another baseline,
adding a reference to the version of the data element to

the current baseline; and
adding a new baseline index element for the version of

the data element and the current baseline identifier to
a current baseline index associated with the current
baseline to record participation of the version of the
data element in the current baseline; and

in response to determining that the version of the data
element has been included in the another baseline,
locating a baseline index element in another baseline

index associated with the another baseline for the
version of the data element; and

adding the current baseline identifier to the located
baseline index element to record participation of
the version of the data element in the current base
line.

9. The system of claim 8, wherein the version of the data

10

15

25

30

element is a most recent version of the data element.
10. The system of claim 8, wherein the current baseline

comprises versions of specific data elements stored in a data
store and index elements stored in an index store, and wherein
the current baseline represents a state of the data store and the
index store at a particular point in time.

11. The system of claim 8, wherein a request is received to
create the current baseline at a specified date and time.

12. The system of claim 8, wherein a request is received

35

40

13. The system of claim 8, wherein the operations further
comprise:

receiving a request to delete a particular baseline with a
particular baseline identifier; and

removing the particular baseline identifier for the particu
lar baseline.

14. The system of claim 8, wherein the operations further

45

comprise:
updating an another baseline index element.
15. A computer program product comprising a non-transi

50

tory computer readable storage medium including a computer

12
readable program, wherein the computer readable program
when executed by a processor on a computer causes the
computer to perform:

in response to determining that a version of a data element
in a data store is to be included in a current baseline
having a current baseline identifier and representing a
set of data elements at a point in time and that has not
been included in another baseline,
adding a reference to the version of the data element to

the current baseline; and
adding a new baseline index element for the version of

the data element and the current baseline identifier to
a current baseline index associated with the current
baseline to record participation of the version of the
data element in the current baseline; and

in response to determining that the version of the data
element has been included in the another baseline,
locating a baseline index element in another baseline

index associated with the another baseline for the
version of the data element; and

adding the current baseline identifier to the located base
line index element to record participation of the ver
sion of the data element in the current baseline.

16. The computer program product of claim 15, wherein
the version of the data element is a most recent version of the
data element.

17. The computer program product of claim 15, wherein
the current baseline comprises versions of specific data ele
ments stored in a data store and index elements stored in an
index store, and wherein the current baseline represents a
state of the data store and the index store at a particular point
in time.

18. The computer program product of claim 15, wherein a
request is received to create the current baseline at a specified
date and time.

19. The computer program product of claim 15, wherein
the a request is received that specifies criteria for selecting a
Subset of data elements in a data store to be included in the
current baseline.

20. The computer program product of claim 15, wherein
the computer readable program when executed by the proces
sor on the computer causes the computer to perform:

receiving a request to delete a particular baseline with a
particular baseline identifier; and

removing the particular baseline identifier for the particu
lar baseline.

21. The computer program product of claim 15, wherein
the computer readable program when executed by the proces
sor on the computer causes the computer to perform:

updating another baseline index element.

