
USOO9122422B2

(12) United States Patent (10) Patent No.: US 9,122,422 B2
Johnston et al. (45) Date of Patent: Sep. 1, 2015

(54) REPRESENTING MODELS INSYSTEMS 7,181,731 B2 * 2/2007 Pace et al. 717/136
DEVELOPMENT LIFECYCLE (SDLC) TOOLS 7.315,826 B1* 1/2008 Guheen et al. 705/7

7,548,878 B2 * 6/2009 O'Halloran et al. 705/28
USING ANETWORK OF INTERNET 7.853,643 B1* 12/2010 Martinez et al. TO9,203
RESOURCES 2001/0056386 A1* 12/2001 O'Halloran et al. 705/28

2006/0059253 A1 3/2006 Goodman et al. TO9,223
(75) Inventors: Simon K. Johnston, Siler City, NC 2006/0212408 A1* 9, 2006 Nuestro et al. 705/74

(US); Martin P. Nally, Laguna Beach 2007. O156842 A1* 7, 2007 Vermeulen et al. 709/217
CA (US) s s 2007/0192215 A1* 8/2007 Taylor et al. 705/28

2008/0086495 A1 4/2008 Kiziltunc et al. .. TO7,102
2008/O140760 A1* 6/2008 Conner et al. TO9,201

(73) Assignee: INTERNATIONAL BUSINESS 2008/0162482 A1* 7/2008 Ahern et al. 707/9
MACHINES CORPORATION, 2008/0201338 A1* 8, 2008 Castro et al. 7O7/1OO
Armonk, NY (US) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Mariela Reyes
U.S.C. 154(b) by 1310 days. Assistant Examiner — Soheila Davanlou

(74) Attorney, Agent, or Firm — Patents on Demand P.A.:
(21) Appl. No.: 12/015,742 Brian K. Buchheit; Scott M. Garrett

(22) Filed: Jan. 17, 2008
(57) ABSTRACT

(65) Prior Publication Data In the present solution, as set of SDLC resources can be
US 2009/O187573 A1 Jul. 23, 2009 established, where each is separately addressable through a

unique URL and is able to be managed through a simple set of
(51) Int. Cl. operations. For example, a set of RESTful operations (GET

G06F 9/44 (2006.01) POST, PUT, and DELETE) can be used for the operations.
(52) U.S. Cl. Database management technologies can be leveraged for

CPC .. G06F 8/10 (2013.01) storing and indexing resources, but the underlying database
(58) Field of Classification Search schema for the Solution can operate on a resource level, which

USPC 707/999.001, 600, 609, 687, 769 results in the resources being stored as-is. Thus, storage (even
See application file for complete search history. when database based) of resources for the solution can be

considered an Internet server exposing a space of URL
(56) References Cited addressable objects. Because the solution leverages Internet

ReSource 2ll
Identifier 221

U.S. PATENT DOCUMENTS

6.424,979 B1*
7,020,697 B1 *

7/2002 Livingston et al. T15,206
3/2006 Goodman et al. 709,223

Approach 200

Resource 214
Identifier 224

ReSource 218
Identifier 228

ReSource 212
Identifier 222

Resource 213
Identifier 223

technologies and standards, it is scalable, standards based,
extensible, and traceable.

19 Claims, 7 Drawing Sheets

Resource 217
Identifier 227

Resource 216
Identifier 226

Resource 215
Identifier 225

U.S. Patent Sep. 1, 2015 Sheet 1 of 7 US 9,122,422 B2

Approach 110 Approach 140
Model File

Space 142

Me - 1

Model Database 116 Space 144 Space 148

Space 146

F.G. 1

(Prior Art)

Approach 200

Resource 217
Identifier 227

Resource 216
Identifier 226

Resource 215
Identifier 225

Resource 214
Identifier 224

Resource 211
Identifier 221

Resource 28
Identifier 228

Resource 212
Identifier 222

Resource 23
Identifier 223

FIG. 2

U.S. Patent Sep. 1, 2015 Sheet 2 of 7 US 9,122,422 B2

Repository Server 310

Audit
316

Report
318

()

ReSources
Search

32

REST API
322

HTTP
307

SDLC Tool Browser
330 332

FIG. 3

400

SDLC TOO REST API
410 412 414 416

SQL INSERT 424

Update index for 428

TTP (201) 430 N--------------------
Location

FG. 4

U.S. Patent Sep. 1, 2015 Sheet 3 of 7 US 9,122,422 B2

5 O SDLC Tool REST API
S10 512 S1.4

SQL SELECT 524

MOdified 530

HTTP 532

(200, 404, 410)

FIG. 5

SDLC Tool REST API Indexer
610 612 614 616

SQL SELECT 624

SQL UPDATE 630

Update index for 632

HTTP 634 1-

(200, 404, 410)

U.S. Patent Sep. 1, 2015 Sheet 4 of 7 US 9,122,422 B2

700
SDLC Tool REST API Indexer

710 712 714 716

Validate 722

HTTP 732 -1-
(200, 404, 410)

840

Collection Id
slug
title
Subtitle Resource URI 1 username
accepts USer ID full name
created Datc email address
last-modified() Usage phone

ElementCollection Id
Collection ID
Resource URI

ReSource URI 811
body 813
content-type 814
modified-by 815
last-modified 816
ctag 817 Child Id 836

Parent Id 837
Attribute 838
Attribute 839

Status 818

FG. 8

U.S. Patent Sep. 1, 2015 Sheet 5 Of 7 US 9,122,422 B2

<stakeholder http://example.com/reorder.xml <llSerCaSe
name=Bank name="Reorder

f> f>

<process http://example.com/reorder-process.xml
name=Reorder 905

/>

FIG. 9

U.S. Patent Sep. 1, 2015 Sheet 7 Of 7 US 9,122,422 B2

Code 1020
<?xml version="10" encoding="UTF-8"?>
-usecase:UseOase Xmlns:usecase="http://schema.ibm.com/rbp/2006/UseOase"
name="CheckReOrder">
<link rel="process" type=" alt="Check Reorder Process"
href="CheckReorder.process"/>
<relationship>
4actor alt="Customer" href="Customer. Stakeholder">
<actor alt="Bank" href="Bank.stakeholder">
</relationship>
<relationship>
<actor alt="Printer" href="Printerstakeholder'fe
<actor alt="Bank" href="Bank.stakeholder'fe
</relationship>
K/usecase:Use Case

FIG 10B

<?xml version="10" encoding="UTF-8"?> Code 1030
<stakeholder:Stakeholder Xmlnsistakeholder."
http://schema.ibm.com/rbp/2006/Stakeholder" name="Bank">
<description xmlns:dc="http://purl.org/dc/elements/1.1/">
<dC:CreatOr>Simon Johnston</dc:Creator)
<dc:title>The core stakeholder defining the bank itself.<fac:title>
<dc:description>This stakeholder represents the bank as a legal
organization.</dc.descriptions
<dc:date 2007-01-16</dc:date)
This is the description
</description>
<link rel="source" alt="Based Upon" href="
http://www.ibm.com/imodels/fss/bank.stakeholder"/>
<property name="core">True.</property
</stakeholder:Stakeholder)

FIG 10C

US 9,122,422 B2
1.

REPRESENTING MODELS IN SYSTEMS
DEVELOPMENT LIFECYCLE (SDLC) TOOLS

USING ANETWORK OF INTERNET
RESOURCES

BACKGROUND

1. Field of the Invention
The present invention relates to the field of software devel

opment tooling and, more particularly, to representing mod
els in SDLC tools using a network of Internet resources.

2. Description of the Related Art
A Systems Development Life Cycle (SDLC) is a collection

of process, methods, and tools used by various roles to
develop an information system, including requirements, Vali
dation, training, and user ownership through investigation,
analysis, design, implementation, and maintenance.
Required artifacts in the SDLC can be modeled using a vari
ety of Software modeling tools and standards, such as the
Systems Modeling Language (SysML), Integrated DEFini
tion (IDEF), Entity Relationship Diagrams (E/R), Unified
Modeling Language (UML), processing modeling tools, and
the like. Each of these tools manage a set of associated arti
facts, where an artifact is a software construct that represents
any logical or physical asset created or maintained through a
SDLC. For descriptive purposes, a model is a type of artifact
with a structured representation used by modeling tools.
SDLC tooling can be analyzed in terms of the following

general requirements: Scalability, interoperability, extensible
model representations, and traceability within and between
models. Scalability refers to an ability of a solution to support
hundreds of thousands, if not millions, or artifacts in its
repository without unreasonable measures being taken.
Interoperability, which can be realized in a SDLC context
through open APIs, ensures that users are not locked into a
specific tooling provided by a repository Vender, which can
increase purchase and maintenance costs, can be limiting in
terms of utilization of emerging technologies, and can result
in other problems typical of a lock-in situation. An extensible
model representation describes models in a manner that per
mits them to carry and utilize additional information, Such as
information contributed by an additional tool or end-user.
Extensible tools should have an ability to validate added
content. Traceability within and between models refers to an
ability of an approach to satisfy user needs to express and
understand relationships between models and other SDLC
artifacts. Relationships can include peer relationships (e.g., a
customer having multiple accounts for which particular
SDLC artifacts relate), temporal relationships (e.g., an arti
fact was created from another artifact), and trace relationships
(e.g., showing which SDLC artifacts are associated with
which sets of requirements).

Conventional SDLC modeling tools manage artifacts using
eithera database storage approach or a file system and version
control system approach, each of which has significant short
comings. FIG. 1 (Prior Art) illustrates a conventional data
base storage approach 110 and a conventional model file
approach 140 for storing and managing SDLC artifacts.
The database storage approach 110 provides tools that

operate in a client-server configuration, where information is
stored in tables 112, 114 of a server database 116. An under
lying schema for artifacts is fixed in advance and tools read/
write to specific tables in a shared database 116. Since
approach 110 relies upon a database foundation, it is as Scal
able as the underlying database 116 upon which it is con
structed. Similarly, API's used for approach 110 depend upon
those of an underlying database. Extensibility and traceabil

10

15

25

30

35

40

45

50

55

60

65

2
ity of approach 110 can require a restructuring of underlying
database structures, which can be expensive and time con
Suming. Additionally, many database implementations
include proprietary codes and structural constraints, which
can make user desired modifications difficult. Further, user
interfaces built on top of a database can require changes as a
database structure changes.
A file and version control system (VCS) approach 140 can

create artifacts on the file systems of the user's machines,
which results in artifacts being stored in a set of storage
spaces 142-149. These storage spaces 142-149 can be
“nested by designating a set of spaces 142, usually geo
graphically grouped at a location having a primary function
related to the type of artifact being stored. Within any set of
spaces 142, numerous Sub-spaces 144, 146 can exist. Search
ing for a given artifact can require searching through all the
storage spaces 142-149. This searching can be “optimized'
by grouping different types of artifacts so that only a Subset of
the storage spaces need be searched for a given type of arti
fact, Such as searching space 142. This "optimization”
assumes that a user's search criteria matches criteria through
which the artifacts are grouped. Sometimes, a complete index
offiles in spaces 142-149 is maintained by a set of one or more
servers. Approach 140 generally scales poorly and perfor
mance degrades quickly as an overall artifact quantity
increases. Approach 140 often uses proprietary code and
APIs, with variable extensibility characteristics depending
upon coding practices used to implement an instance of
approach 140. Most conventional solutions following
approach 140 have limited to no traceability within and
between models.

SUMMARY OF THE INVENTION

The present invention discloses a solution for designating
software resources as URL addressable objects. Software
resources can include Systems Development Life Cycle
(SDLC) artifacts. Relationships and linkages among the
resources can be established using the URLs. Each individual
resource can be defined using standard Web based languages,
such as using XML or any other HTML based/derived lan
guage. Additionally, the resources can be stored in a manner
that maintains their internal structure. That is, when stored in
a database, each resource is able to be stored as is, without
breaking down the internal structure into multiple tables or
into a database schema where an atomic unit is less than the
resource level. Servers for managing the various resources
can be established, which accept Representational State
Transfer (REST) based commands. Thus, operations against
resources can occur in a stateless fashion, using a set of simple
operations (e.g., GET, PUT, POST, and DELETE). The dis
closed solution is able to leverage tools and technologies used
for storing, searching, and manipulating Web documents,
since each SDLC resource is considered a URL addressable
object. Optionally, database technologies can be leveraged in
the Solution, which is able to maintain a separate set of
indexes for managed resources, to optimize search times and
performance.
The present invention can be implemented in accordance

with numerous aspects consistent with the materials pre
sented herein. One aspect of the present invention can include
a repository server for managing a network of individual
resources, each of which is associated with an information
technology (IT) asset. The server can include a data store and
a REST Application Program Interface (API). The data store
can store a set of SDLC resources, each resource having a
unique addressable Uniform Resource Identifier (URI) asso

US 9,122,422 B2
3

ciated with it. Each of the SDLC resource can represent a
physical or logical IT asset. Each resource can utilize a stan
dardized markup language to specify asset details. The net
work of individual resources can be linked to other resources
using messages conforming to at least one standard network
messaging protocol. The REST API can be configured for
Submitting resource related requests to the data store. The
REST API can receive and respond to an HTTP GET com
mand, an HTTP PUT command, an HTTP POST command,
and an HTTP DELETE command.

Another aspect of the present invention can include a soft
ware object representinga information technology asset from
which models are able to be built. The software object can
represent a physical or logical IT asset. The Software object
can also include an addressable URI and at least one addi
tional attribute. The URI is uniquely associated with the asset.
The attribute is used to specify a value for the represented
asset. The software object is able to be linked to other soft
ware objects having unique URI addresses using HTTP based
links.

Still another aspect of the present invention can include a
method for specifying IT assets that includes storing and
managing a set of SDLC artifacts as a network of individual
resources. Each individual resource can have a unique and
addressable URI associated with it. Each of the SDLC arti
facts can represent a physical or logical information technol
ogy asset. Each resource can utilizes a standardized markup
language to specify asset details, wherein said network of
individual resources are linked to other resources using mes
sages conforming to standard network messaging protocols.

It should be noted that various aspects of the invention can
be implemented as a program for controlling computing
equipment to implement the functions described herein, or as
a program for enabling computing equipment to perform
processes corresponding to the steps disclosed herein. This
program may be provided by storing the program in a mag
netic disk, an optical disk, a semiconductor memory or any
other recording medium. The program can also be provided as
a digitally encoded signal conveyed via a carrier wave. The
described program can be a single program or can be imple
mented as multiple Subprograms, each of which interact
within a single computing device or interact in a distributed
fashion across a network space.

BRIEF DESCRIPTION OF THE DRAWINGS

There are shown in the drawings, embodiments which are
presently preferred, it being understood, however, that the
invention is not limited to the precise arrangements and
instrumentalities shown.

FIG. 1 (Prior Art) illustrates a conventional database stor
age approach and a conventional model file approach for
storing and managing Systems Development Life Cycle
(SDLC) artifacts.

FIG. 2 is a schematic diagram illustrating using an
approach for storing and managing SDLC artifacts as a net
work of individual resources in accordance with an embodi
ment of the inventive arrangements disclosed herein.

FIG. 3 is a schematic diagram of a system for managing/
using a network of SDLC resource in accordance with an
embodiment of the inventive arrangements disclosed herein.

FIG. 4 is a flow diagram showing a method for creating a
new SDLM resource in accordance with an embodiment of
the inventive arrangements disclosed herein.

FIG.5 is a flow diagram showing a method for retrieving an
existing SDLM resource in accordance with an embodiment
of the inventive arrangements disclosed herein.

5

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 6 is a flow diagram showing a method for updating an

existing SDLM resource in accordance with an embodiment
of the inventive arrangements disclosed herein.

FIG. 7 is a flow diagram showing a method for deleting an
existing SDLM resource in accordance with an embodiment
of the inventive arrangements disclosed herein.

FIG. 8 is a diagram showing a database storage schema for
storing SDLM resources as well as ancillary data, Such as user
records and collections of resources.
FIG.9 represents a use case with a number of related actor

elements in accordance with an embodiment of the inventive
arrangements disclosed herein.

FIG. 10A (Prior Art) shows a code example for represen
tation of the use case of FIG.9 using OMG's XML Metadata
Interchange (XMI).
FIG.10B shows a code example for representing a use case

of FIG.9 utilizing a network of resources approach.
FIG.10C shows a code example for representing a resource

of FIG.9 utilizing a network of resources approach.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 2 is a schematic diagram illustrating using an
approach 200 for storing and managing Systems Develop
ment Life Cycle (SDLC) artifacts as a network of individual
resources in accordance with an embodiment of the inventive
arrangements disclosed herein. As defined herein, a resource
211-218 can be a SDLC artifact that is managed according to
Internet architecture principles. A SDLC artifact can be a
Software construct that represents any logical or physical
asset created or maintain through a SDLC.

Each resource 211-218 can include a unique identifier 221
228, which can be an addressable Uniform Resource Identi
fier (URI). Each resource 211-218 can use standardized lan
guages, such as extensible Markup Language (XML), a
HypertextMarkup Language (HTML), or any other language
markup based or otherwise, to specify asset details.
Resources 211-218 can be linked 231-239 to other resources
211-218 using standard messages conforming to standard
network messaging protocols. A set of resources 211-218 can
be stored and managed within an open Internet repository of
resources based upon Hypertext Transfer Protocol (HTTP)
and Representational State Transfer (REST) principles.

Interms of scalability, approach 200 leverages the scalabil
ity model employed by the Internet today, which is almost
endlessly scaleable. Each resource 211-218 is separately
addressable and is managed through a simple set of opera
tions. In one embodiment, database management technolo
gies can be leveraged for storing and indexing resources
211-218. Unlike conventional database implementations,
however, a database schema for the resources 211-218 is
intended to store the resources 211-218 as-is rather than hav
ing specific tables established for different resource types and
resource attributes. Thus, storage (even when database based)
of resources 211-218 for approach 200 can be considered an
Internet server exposing a space of URL addressable objects.
Links between resources 211-218 are only of concern to the
client navigating a network of resources 211-218.

In terms of using open Application Program Interfaces
(APIs), approach 200 uses a REST style of HTTP usage,
which is a foundational concept of the Internet architecture.
Interactions with resources 211-218 can occur statelessly
through a set of basic primitive commands, such as HTTP
GET, HTTP POST, HTTP GET, and HTTP DELETE. REST
commands able to be handled by many Web browsers. That is,
most Web browsers can retrieve? review resources 211-218
directly without a need for specialized tooling. Additionally,

US 9,122,422 B2
5

any REST based tool can used for retrieving, adding, updat
ing, and deleting resources 211-218, which makes API con
siderations for approach 200 a non-issue.

Unlike conventional approaches, which rarely permit
SDLC artifacts to be extended with additional content, in
approach 200, resource formats become part of the contract
between servers and client tools. In other words, formats for
SDLC can be standardized in any manner. A base standard
can be established, by a standardizing organization Such as
the WorldWideWeb Consortium (W3C), for example, which
can be extended at will. In one embodiment, resource 211
218 representations can be defined using XML and can spe
cifically require namespace-aware processors such that
extensions to resource formats can be defined in different
XML namespaces and can therefore be mixed in to resources
211-218 in ways that do not affect the client processing of the
resources 211-218.

In terms of traceability, the resources 211-218 are each
treated as separate objects able to be linked to using URLs.
This approach works by providing a very simple and exten
sible (REST messages) mechanism for both intra and inter
resource links. In one embodiment, traceability relationships
with resources 211-218 can be indexed so as to be able to
produce resources to reverse queries. Traceability operations
can be handled in the same manner as other linkages to the
resources 211-218, even when traceability (or other) opera
tions represent actions not known a priori by a resource
designer. New functionality can even be added post deploy
ment, so long as the standard conventions for URL referenc
ing of the resources 211-218 are utilized.

It should be appreciated that the approach 200 is vastly
different from conventional systems that either don’t imple
ment traceability capabilities or that implement them with
separate and distinct tools. Use of separate tool can result in
fragmentation of information and fragile links. Other conven
tional approaches attempt to define a single model that
describes a set of concepts in a domain and the set of rela
tionships among them. These approaches Suffer from a
"closed worldview' where the model becomes hard to extend
and is often too rigid to accommodate new concepts and
operations.

FIG. 3 is a schematic diagram of a system 300 for manag
ing/using a network of SDLC resource in accordance with an
embodiment of the inventive arrangements disclosed herein.
The resources 314 of system 300 can be structured and linked
in a manner shown by approach 200. More specifically, sys
tem 300 describes one arrangement for managing a network
of SDLC resources in a shared repository, which provides
open and extensible access to the resources. System 300 also
leverages open protocols and existing Internet practices to
provide a scalable repository. It should be appreciated that
system 300 represents one contemplated arrangement for
managing/using SDLC resources and that the invention is not
to be limited in this regard.
As shown in system 300, a repository server 300 can main

tain a database of resources 314 that are currently being
managed by the server 310. The resources 314 can be stored
in a data store/database local to server 310, or can be stored in
a more distributed fashion, where server 310 maintains a set
of URLs for the “stored’ resources, which are used to refer
ence the resources regardless of their actual storage location.
Server 310 can also maintain a set of indexes 312 for the
resources 314, which permits queries to be executed against
the resources 314. In one embodiment, the indexes 312 can be
stored in a relational database so that standard queries can be
efficiently executed against the indexes 312, such as SQL
queries and commands.

10

15

25

30

35

40

45

50

55

60

65

6
The server 310 can include an auditing component 316, a

reporting component 318, and/or a search component 320,
each of which can utilize information stored in repository 312
and/or 314. The auditing component 316 can provide trace
ability capabilities for the resources, can show a change and
usage history for the resource, and the like. Version control
functions, such as check-in and check-out functions can also
be performed/handled by auditing component 316. The
reporting component 318 can permit any type of report
involving the resources to be generated. Reports of compo
nent 318 can include SQL based reports, standard system
provided reports, and user customized reports. Dynamic
report generation and/or an ability to save and re-use previ
ously created reports can be included in component 318. The
search component 320 can permit cross-repository text
searches and/or intra repository searches. Database and Web
searching technologies can both be implemented within
search component 320 to provide robust, extensible, and
responsive search capabilities.

All the capabilities of server 310 can be accessed through
REST API322. That is, HTTP requests 307 (e.g., HTTP GET,
HTTP POST, HTTP PUT, and HTTP DELETE) can be used
to communicate with server 310. Server 310 communications
can originate from a SDLC specific tool 330, from more
generic tools, from any REST interface, and even from a
standard (or enhanced) browser 332.
The server 310 can be any computing device or set of

computing devices able to manage resources as described. In
one embodiment, the server 310 can represent a physical
server having installed software that executes locally. In
another embodiment, the server 310 can also represent a
virtual server or a distributed server, which is physically
implemented by one or more hardware devices that may be
distributed from each other. In still other embodiments, server
310 can further be implemented as a cluster of servers, or as
a resilient set of servers linked in an autonomic manner. Use
of REST standards and Internet protocols makes it easy
implement functions of server 310 is a highly configurable
and flexible manner.
The indexes 312 and resources 314 can each be data stores

configured to maintain digitally encoded information. Each
of the data stores can be physically implemented within any
type of hardware including, but not limited to, a magnetic
disk, an optical disk, a semiconductor memory, a digitally
encoded plastic memory, a holographic memory, or any other
recording medium. Each data stores can be a stand-alone
storage unit as well as a storage unit formed from a plurality
of physical devices. Additionally, information can be stored
within each of the data stores in a variety of manners. For
example, information can be stored within a database struc
ture or can be stored within one or more files of a file storage
system, where each file may or may not be indexed for infor
mation searching purposes. Further, each data store can ulti
lize one or more encryption mechanisms to protect stored
information from unauthorized access.

FIG. 4-7 illustrate message flows for implementing basic
REST commands for SDLM resources. These basic com
mands can be to insert (HTTP POST), retrieve (HTTP GET),
update (HTTP PUT), and delete (HTTP DELETE) SDLM
resources that are stored as a network of resources in an
Internet space. In one embodiment, the REST commands of
FIG. 4-7 can be issued to a repository server (e.g., repository
server 310) through a REST API (e.g., API322). The reposi
tory server can include a resource storage element (e.g.,
resources data store 314 and search 320) and an indexer (e.g.,
indexes 312 and search 320). Although the examples of FIG.
4-7 show commands issuing from a SDLC tool (e.g., tool 330)

US 9,122,422 B2
7

to a REST API of a repository server, commands from other
Sources (e.g., browser 332, for example) are contemplated. It
should be appreciated that while FIG. 4-7 shows a sample
implementation, derivatives are contemplated and that a
Scope of the invention is not to be limited in this regard.

FIG. 4 is a flow diagram 400 showing a method for creating
a new SDLM resource in accordance with an embodiment of
the inventive arrangements disclosed herein. The diagram
400 can be applicable in context of any computing system
using networked SDLM resources (as shown in diagram
200), such as system 300. Diagram 400 shows a SDLC tool
410, a REST API 412, a storage 414, and an indexer 416,
which interact during the resource creation process.

In diagram 400, an HTTP POST command 420 can be sent
from tool 410 to REST API 412, where the command 420
creates a new resource. The new resource can be validated
422, then inserted into storage 414 using a database insert
command 424. A command 428 to update indexes associated
with the new resource can be conveyed to an indexer 416. The
indexer 416 can be a full text search engine, such as APACHE
LUCENE. When the new resource is successfully created, a
created response 430 (e.g., HTTP 201 code) can be returned
to the SDLC tool 410. Otherwise, an appropriate error code
can be returned to tool 410.

FIG. 5 is a flow diagram 500 showing a method for retriev
ing an existing SDLM resource in accordance with an
embodiment of the inventive arrangements disclosed herein.
The diagram 500 can be applicable in context of any comput
ing system using networked SDLM resources (i.e., as shown
in diagram 200), such as system 300. Diagram 500 shows a
SDLC tool 510, a REST API 512, and a storage 514.

In diagram 500, a HTTP GET command 520 can be sent
from tool 510 to REST API 512, where the command 520
attempts to retrieve an existing resource. The request can be
first validated 522. If valid, a retrieval request 524 can be sent
to storage 514 for the resource. The request can, for example,
be a database select query. A series of conditional actions can
then occur based upon requests of the resource request to
storage 514. If the requested resource is not found in storage
514, then a Not Found message 532 (e.g., HTTP 404 code)
can be conveyed from REST API 512 to SDLC tool 510. The
requested resource can be found in storage 514, but marked as
deleted 526, in which case a Gone message 532 (e.g., HTTP
410 code) can be returned to tool 510. The requested resource
can be of an incompatible type 528 compared to the stored
resource format (determined based upon the Accepts request
header, for example), in which case a Forbidden response 532
(e.g., HTTP 403 code) can be sent to tool 510. If the discov
ered resource has not been changed since the client last
attempted to access it (determined using HTTP entity tags
and conditional requests, for example) the server can return a
Not Modified response 532 (e.g., HTTP304 code) to toolS10.
If everything succeed, a Success message 532 (e.g., HTTP
200 code) can be conveyed.

FIG. 6 is a flow diagram 600 showing a method for updat
ing an existing SDLM resource in accordance with an
embodiment of the inventive arrangements disclosed herein.
The diagram 600 can be applicable in context of any comput
ing system using networked SDLM resources (i.e., as shown
in diagram 200), such as system 300. Diagram 600 shows an
SDLC tool 610, a REST API 612, a storage 614, and an
indexer 616.

In diagram 600, a HTTP PUT command 620 can be sent
from tool 610 to REST API 612, where the command is for
updating an existing resource. The request can be validated
622, which is followed by a database query 624. The query
624 can be, for example, a SQL select command 624 from

10

15

25

30

35

40

45

50

55

60

65

8
API 612 to storage 614 for finding the existing resource. If the
requested resource is not found in storage 614, then a Not
Found message 634 (e.g., HTTP 404 code) can be conveyed
from REST API 612 to SDLC tool 610. The requested
resource can be found in storage 614, but marked as deleted
626, in which case a Gone message 634 (e.g., HTTP 410
code) can be returned to tool 610. The requested resource can
be of an incompatible type 628 compared to the stored
resource format (determined based upon the Accepts request
header, for example), in which case a Forbidden response 634
(e.g., HTTP403 code) can be sent to tool 610. If the discov
ered resource has not been changed since the client last
attempted to access it (determined using HTTP entity tags
and conditional requests, for example) the server can return a
Not Modified response 634 (e.g., HTTP304 code) to tool 610.
If everything succeeds, an update 630 SQL action can be
performed. Indexes for the resource can then be updated via
command 632, after which a Success indicator 634 can be
sent to the tool 610.

FIG. 7 is a flow diagram 700 showing a method for deleting
an existing SDLM resource in accordance with an embodi
ment of the inventive arrangements disclosed herein. The
diagram 700 can be applicable in context of any computing
system using networked SDLM resources (i.e., as shown in
diagram 200), such as system 300. Diagram 700 shows an
SDLC tool 710, a REST API 712, a storage 714, and an
indexer 716.

In diagram 700, a HTTP DELETE command 720 can be
sent from tool 710 to API 712 to remove an existing resource
from storage, the request can be validated 722, and the
resource to be deleted can be searched 724 for in storage 714.
Various checks (i.e., Not Found: Gone 726) can be performed
to ensure the resource exists in storage 714. If so, a SQL delete
728 command can be issued to storage 714 to delete the
resource and indexes 730 can be updated. A suitable response
732 depending upon whether the delete operation was suc
cessful can be sent to the SDLC tool 710.

FIG. 8 is a diagram 800 showing a database storage schema
for storing SDLM resources as well as ancillary data, Such as
user records and collections of resources. Diagram 800 can
represent one contemplated database structure for resources
data store 312 and/or for storage 414, 514,614, 714. Storage
structures other than what is shown in diagram 800 are con
templated and the invention is not to be limited in this regard.
The diagram 800 is expressed in approximately third nor

mal form, as is standard for database schema representations.
As shown, a many-to-many relationship can exist between
resource collection table 840 and resource table 810, which
are joined by resource collection associative table 830. This
indicates that a resource can be part of many collections, and
that each collection can include many resources. A many-to
many relationship also exists between the resources 810 and
users 860, linked through resource user table 850. This indi
cates that resources can be accessed/updated/created/deleted
by many different users and that users can manipulate many
different resources.
As shown, each resource of table 810 can be uniquely

identified by a URL 811, which serves as a primary key for
table 810. Other attributes of table 810 can include a body
813, a content type 814, a modificationid 185, a last modified
value 816, anetag 817, a status 818, and the like. A set of table
810 attributes 814-818 can be tailored/optimized for the
HTTP protocol, which allows for efficient protocol opera
tions while provisioning for protocol specific capabilities,
Such as write-contention detection and deletion reporting.
The body 813 of a resource is a stored software object not
having a specific shape, type, or structure. Thus, structured

US 9,122,422 B2

XML files, word processor documents, image files, and the
like can be equally well stored and managed by this schema.

In one contemplated derivation of schema 800, different
types of resource body objects can be stored in different tables
along with content type specific attributes, in which case the
body 814 and content type 815 can together serve as a foreign
key relating table 810 to these remote tables. This emphasizes
that the schema of diagram 800 can be easily adapted by
skilled database designers to handle an arbitrary level of
complexity.

Resources of table 810 can be structured to create models,
which can each be a collection definable by table 830 entries.
Resource structure within a model can be indicated by
attribute values of the resource collection associative table
830. For example, a structure level 832 can indicate a
resource's position in a hieratical structure. When resources
are able to be structured in a parent/child relationship, struc
tural table 835 can be used to denote these relationships,
where each child 836 and parent 837 element is a foreign key
to an entry of the table 830. Different structural attributes 838,
839 can be included in structure table 835 to indicate struc
tural characteristics important to the associated model. The
schema of diagram 800 can be modified to include any num
ber of structure defining tables and attributes. Thus, derivative
schemas can be constructed to characterize any desired soft
ware model formed from structuring a set of resources.

FIG.9 represents a use case with a number of related actor
elements in accordance with an embodiment of the inventive
arrangements disclosed herein. The elements 901, 902,904
can represent a stakeholder, a use case, and a process respec
tively. Communications among elements 901, 902, and 904
can be through a set 903,905 of HTTP based messages. The
use case of FIG. 9 is a generic and can be implemented using
any of a number of approaches, such as approaches 110, 140,
or 200 shown in FIG. 1-2.
Code 1010 of FIG. 10A (Prior Art) shows a representation

of the use case of FIG.9 using a commonly modeling format
(e.g., OMG's XML Metadata Interchange (XMI)). FIG. 10A
demonstrates a “closed world view implemented by many
conventional modeling tools. The assumption of code 1010 is
that there is a root model element that contains everything
needed for all SDLM artifacts. In code 1010, links within a
model are separate and distinct from links to external
resources, which are links that use proprietary URL formats.
Also, tools associated with code 1010 do not expect arbitrary
extension data to be included in the artifact, which limits their
extensibility. Instead, the tools at best discard or ignore exten
sion data. At worse, extension data can render a related arti
fact unusable. Code 1010 is an XMI representation of a UML
model, and an associated tool can only permit extensions if
they use standard UML extension capabilities, which SDLM
tools for the model may or may not completely support
depending upon how strictly they conform to UML standards.
Code 1020 of FIG. 10B and code 1030 of FIG. 10C con

form to standards of approach 200, where every major con
cept is separated into its own resource type. So implementing
the use case of FIG.9 using concepts of approach 200 actors
and processes are all individual resources, each having its
own unique URL. Resources can be linked together using
these URLs.
Code 1020 specifically represents the use case resource. It

should be noted that links shown in code 1020 are relative
links, which use whatever protocol and server/path that was
used to retrieve the use case itself.
Code 1030 represents code for one of the actors referenced

by the use case of FIG. 9. Code 1030 demonstrates a use of
XML namespaces to mix in content that is not part of the core

5

10

15

25

30

35

40

45

50

55

60

65

10
model, but that is defined by an external party (e.g., the
creator, title, description, and data elements). Code 1030 also
demonstrates a use of an absolute URL in referencing the
stakeholder resource (of the use case of FIG.9) upon which
the resource associated with code 1030 is logically based.
The present invention may be realized in hardware, soft

ware or a combination of hardware and software. The present
invention may be realized in a centralized fashion in one
computer system or in a distributed fashion where different
elements are spread across several interconnected computer
systems. Any kind of computer system or other apparatus
adapted for a carrying out methods described herein is Suited.
A typical combination of hardware and Software may be a
general purpose computer system with a computer program
that, when being loaded and executed, controls the computer
system such that it carries out the methods described herein.
The present invention also may be embedded in a computer

program product, which comprises all the features enabling
the implementation of the methods described herein, and
which when loaded in a computer system is able to carry out
these methods. Computer program in the present context
means any expression, in any language, code or notation, of a
set of instructions intended to cause a system having an infor
mation processing capability to perform a particular function
either directly or after either or both of the following: a)
conversion to another language, code or notation; b) repro
duction in a different material form.
What is claimed is:
1. A method for specifying IT assets comprising:
storing and managing a set of Systems Development Life

Cycle (SDLC) artifacts as a network of individual
resources stored on a resource level in an internet space,
each individual resource having a unique and address
able Uniform Resource Identifier (URI) associated with
it, wherein each of the SDLC artifacts represents at least
one of a physical and logical information technology
asset, wherein each individual resource has at least one
attribute other than the URI that specifies a value for the
represented asset, wherein each of the individual
resources utilizes a standardized markup language to
specify asset details, wherein the individual resources
are linked to one another using messages conforming to
at least one standard network messaging protocol; and

managing the SDLC artifacts through a repository server,
comprising hardware and software, wherein communi
cations to and from the repository server occur through
a Representational State Transfer (REST) based Appli
cation Program Interface (API), wherein at least a por
tion of the SDLC artifacts are stored in the internet space
within non-transitory storage devices remotely located
from the repository server, wherein each SDLC artifact
is a URI addressable object, wherein the repository
server uses the URIs to reference the individual
resources across the internet space regardless of the
actual storage location of the individual resources,
wherein the repository server maintains a set of indexes
for the individual resources within a database, wherein
URIs of the individual resources are used as unique keys
within the database allowing the repository server to
uniquely identify the individual resources, wherein the
indexes permits queries directed to the set of SDLC
artifacts to be effectively executed by the repository
server responsive to requests from the messages
received via the REST based API.

2. The method of claim 1, further comprising: managing
the set of SDLC artifacts using a set of stateless Representa
tional State Transfer (REST) based commands.

US 9,122,422 B2
11

3. The method of claim 1, further comprising: establishing
a repository local to the repository server comprising a plu
rality of said individual resources, wherein within the reposi
tory each of the individual resources is stored in a data store at
a granularity unit level of one of said individual resources.

4. The method of claim 1, wherein said communications to
and from the repository server occurring through the REST
API include communications based upon an HTTP GET
command, upon an HTTP POST command, upon an HTTP
PUT command, and upon an HTTP DELETE command.

5. The method of claim 1, wherein the repository server
provides version control functions including check-in and
check-out functions for the SDL artifacts managed by the
repository server.

6. The method of claim 1, wherein said repository server
comprises:

an audit component configured to provide traceability
capabilities for the of the SDLC artifacts managed by the
repository server;

a report component configured to execute a set of SQL
based reports of the SDLC artifacts managed by the
repository server; and

a search component configured to permit cross-repository
text searches for the of the SDLC artifacts managed by
the repository server.

7. The method of claim 1, wherein the standardized markup
language is an XML language, and wherein the standard
network messaging protocol is a HyperText Transfer Proto
col (HTTP).

8. The method of claim 1, wherein said step of claim 1 is
performed by at least one machine inaccordance with at least
one computer program stored in a computer readable media,
said computer programming having a plurality of code sec
tions that are executable by the at least one machine.

9. A software artifact representing an information technol
ogy asset from which models are able to be built comprising:

a plurality of software artifacts stored on a resource level in
an internet space, wherein said software artifacts
together form a Software Development Lifecycle
(SDLM) model, each of the plurality of software arti
facts representing at least one of a physical and logical
information technology asset, wherein each individual
resource has at least one attribute other than the URI that
specifies a value for the represented asset;

an addressable uniform resource identifier (URI) that is
uniquely associated with said asset; and

at least one attribute used to specify a value for said repre
sented asset, wherein said software artifact is able to be
linked to other software artifacts having unique URI
addresses using HTTP based links, wherein said soft
ware artifact is digitally encoded and stored in a non
transitory machine readable medium, wherein a reposi
tory server, comprising hardware and Software, permits
communications to and from the repository server occur
through a Representational State Transfer (REST) based
Application Program Interface (API), wherein at least a
portion of the software artifacts are stored in the internet
space within non-transitory storage devices remotely
located from the repository server, wherein the reposi
tory server uses the URIs for the assets to reference the
individual software artifacts across the internet space
regardless of the actual storage location of the individual
resources, wherein the repository server maintains a set
of indexes for the individual resources within a database,
wherein URIs of the individual resources are used as
unique keys within the database allowing the repository
server to uniquely identify the individual resources,

5

10

15

25

30

35

40

45

50

55

60

65

12
wherein the indexes permits queries directed to the set of
SDLC artifacts to be effectively executed by the reposi
tory server responsive to requests from the messages
received via the REST based API.

10. The software artifact of claim 9, wherein said SDLM
model, which is able to be built from the software artifacts is
a Unified Modeling Language (UML) model.

11. The software artifact of claim 9, wherein the software
artifact is written in XML.

12. The software artifact of claim 9, wherein a set of Rep
resentational State Transfer (REST) based commands exist
for utilizing and modifying said software artifact.

13. The software object of claim 9, wherein said software
artifact is able to be retrieved, viewed, edited, deleted, and
added to a software model constructed from a set of said
software artifacts via a Representational State Transfer
(REST) based interface using a set of REST based com
mands.

14. The software artifact of claim 9, wherein the software
artifact is part of a repository local to the repository server
comprising a network of individual resources each of which is
one of said Software artifacts, wherein said repository is man
aged by the repository server, wherein each of the individual
resources is stored in a data store at a granularity unit level of
one of the individual resources.

15. A repository server for managing a network of indi
vidual resources, each of which is associated with an IT asset
comprising:

a data store storing a plurality of Systems Development
Life Cycle (SDLC) artifacts as a network of individual
resources stored on a resource level in an internet space,
each SDLC artifact having a unique addressable Uni
form Resource Identifier (URI) associated with it,
wherein each of the SDLC artifacts represents at least
one of a physical and logical information technology
asset, wherein each individual resource has at least one
attribute other than the URI that specifies a value for the
represented asset, wherein each of the SDLC artifacts is
configured to utilize a standardized markup language to
specify asset details, wherein said SDLC artifacts are
linked to one another using messages conforming to at
least one standard network messaging protocol;

a repository server, comprising hardware and Software,
that managing the SDLC artifacts, wherein communica
tions to and from the repository server occur through a
Representational State Transfer (REST) based Applica
tion Program Interface (API), wherein at least a portion
of the SDLC artifacts are stored in the internet space
within non-transitory storage devices remotely located
from the repository server, wherein each SDLC artifact
is a URI addressable object, wherein the repository
server uses the URIs to reference the individual
resources across the internet space regardless of the
actual storage location of the individual resources,
wherein the repository server maintains a set of indexes
for the individual resources within a database, wherein
URIs of the individual resources are used as unique keys
within the database allowing the repository server to
uniquely identify the individual resources, wherein the
indexes permits queries directed to the set of SDLC
artifacts to be effectively executed by the repository
server responsive to requests from the messages
received via the REST based API; and

the Representational State Transfer (REST API) for sub
mitting SDLC artifact related requests to the data store,
wherein said REST API is able to receive and respond to

US 9,122,422 B2
13

an HTTP GET command, an HTTP PUT command, an
HTTP POST command, and an HTTP DELETE com
mand.

16. The repository server of claim 15, further comprising:
an index data store comprising the set of indexes related to

said SDLC artifacts, which permit database queries to be
executed against the SDLC artifacts, wherein when the
HTTP GET command is received a corresponding SQL
SELECT query is executed against entries of the data
store of SDLC artifacts, wherein when the HTTP POST
command is received a corresponding SQL INSERT
command is executed that results in a new artifact being
added to the data store of the SDLC artifacts and that
results in an update of the indexes of the index data store,
wherein when the HTTP PUT command is received a
corresponding SQL UPDATE command is executed
against entries of the data store of the SDLC artifacts and
that results in an update of the indexes of the index data
store, wherein when the HTTP DELETE command is
received a corresponding SQL DELETE query is

10

15

14
executed against entries of the data store of the SDLC
artifacts and that results in an set of indexes related to the
deleted artifact being removed from the index data store.

17. The repository of claim 15, further comprising:
an audit component configured to provide traceability

capabilities for the SDLC artifacts:
a report component configured to execute a set of SQL

based reports involving the SDLC artifacts; and
a search component configured to permit cross-repository

text searches for the SDLC artifacts.
18. The repository of claim 17, wherein the standardized

markup language is an XML language, and wherein the stan
dard network messaging protocol is a HyperText Transfer
Protocol (HTTP).

19. The repository of claim 16, wherein said SDLC arti
facts are able to be linked together to form a plurality of
Software Development Lifecycle (SDLM) models, where
said SDLM models comprise at least one Unified Modeling
Language (UML) model.

